

Nayuta Users' Meeting 2022

Near-IR Polarimetry of Large Atmosphereless Bodies

(1) Ceres & (4) Vesta

YOONSOO P. BACH¹, MASATERU ISHIGURO¹, JUN TAKAHASHI², JOOYEON GEEM¹,

HIROYUKI NAITO³, JUNGMI KWON⁴, AND DAISUKE KURODA⁵

¹ Department of Physics and Astronomy, Seoul National University, S. Korea; SNU Astronomy Research Center (SNUARC), Department of Physics and Astronomy, Seoul National University, S. Korea; ²Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Japan; ³Nayoro Observatory, Japan; ⁴The University of Tokyo, Japan; ⁵Okayama Observatory, Kyoto University, Japan

Contents

- Introduction
- Observation

Results

Discussions

2022-07-25 Nayuta Users' Meeting

 $\text{INTRODUCTION} \ \Rightarrow \ \text{OBSERVATION} \ \Rightarrow \ \text{RESULTS} \ \Rightarrow \ \text{DISCUSSION}$

Introduction - Asteroid polarimetry

 \succ The "proper" polarization degree, $P_{\rm r}$,

$$P_{\rm r} \coloneqq \frac{I_{\perp} - I_{\parallel}}{I_{\perp} + I_{\parallel}}$$

 $\| \& \bot$: parallel/perpendicular to the *scattering plane* cf. Rayleigh scattering: $I_{\parallel} < I_{\perp}$

is known to be a function of phase angle (α) only (observation & Lab)

INTRODUCTION \Rightarrow OBSERVATION \Rightarrow RESULTS \Rightarrow DISCUSSION

Introduction

- albedo
- spectral type
- particle size
- hydrated minerals

 P_{\min}

Introduction

Among these, a <u>long-forgotten (?)</u> relation:
polarimetry as function of size-parameter (^{πD}/₂)

numbers = D/λ α_{\min} α_0 0 6 8 10 12 10 14 16 18 20 22 24 26 28 0 0 J2 -2 $D/\lambda =$ -2 J3 11 .6 5.6 1 - 522 **P**_{min} -4 $D/\lambda =$ P_{\min} -4 1-5 -6 10-3 -6 -8 1.9 -8 -10 -10 0.68 0.68 -12 -12 -14 -14 0.44 0.38 -16 0.093 -16 0.093 -18

GeakeJE+GeakeM (1990), MNRAS, 245, 46

2022-07-25 Nayuta Users' Meeting

 $\underline{INTRODUCTION} \Rightarrow OBSERVATION \Rightarrow RESULTS \Rightarrow DISCUSSION$

Large asteroids are expected to be covered with fine particles (≤ **20 μm size)** due to large gravity

polarimetry [Le Berte T. & Zellner B. (1980), Icar., 43, 172]

and spectroscopy [Hiroi, T., Pieters, C. M., Takeda, H. (1994), Metic., 29, 394; Li, J.-Y. et al. (2011), Icar, 216, 640.; Martikainen, J. et al. (2019), MNRAS, 483, 1952.]

Introduction

Particle size measurement is very important yet difficult...

GrottM+ (2019) NatAs 3 971.

2022-07-25 Nayuta Users' Meeting

 $\underline{INTRODUCTION} \Rightarrow OBSERVATION \Rightarrow RESULTS \Rightarrow DISCUSSION$

Observation

- > NHAO NIC, polarimetric-mode
- J/H/Ks simultaneous polarimetry
- ▶ (1) Ceres: 5 obs.

2020-06-21, 2020-10-02, 2020-10-18, 2021-09-09, 2021-11-07

▶ (4) Vesta: 6 obs.

2019-10-22, 2019-11-08, 2019-11-21, 2019-12-18, 2020-01-10, 2020-02-13

World-FirstSecond* Near-IR polarimetry of asteroid using NHAO NIC. Found regolith particle size using NIR polarimetry: * among peer-reviewed publications Masiero]+ (2022), PSJ, 3, 90

IshiguroM+2011, ARNHAO, 21, 13 TakahashiJ+2018, SAG, 1,17 TakahashiJ+2019, SAG, 2(3)

2022-07-25 Nayuta Users' Meeting

INTRODUCTION \Rightarrow <u>OBSERVATION</u> \Rightarrow RESULTS \Rightarrow DISCUSSION

A Justification of Our Data Reduction

2022-07-25 Nayuta Users' Meeting

INTRODUCTION \Rightarrow <u>Observation</u> \Rightarrow Results \Rightarrow Discussion

Results

"aperture mode" means different photometric algorithms.

• Note how consistent they are, regardless of the algorithms.

2022-07-25 Nayuta Users' Meeting

INTRODUCTION \Rightarrow OBSERVATION \Rightarrow <u>**Results</u> \Rightarrow Discussion**</u>

Results

Ceres: Two data (both at J/H) from another study coincides well

• max difference $\sim 0.1\%$ p

MasieroJ+ (2022), PSJ, 3, 90

Vesta: THE first result

2022-07-25 Nayuta Users' Meeting

INTRODUCTION \Rightarrow OBSERVATION \Rightarrow <u>**RESULTS**</u> \Rightarrow DISCUSSION

Results - Ceres

- ➢ Phase curve at NIR ≈ optical data
- > parameters

0

0

° P

0

- *h* : slightly increases at longest λ ? (0.263 \rightarrow 0.258 \rightarrow 0.312 [%/°])
- : virtually no change $(17.9 \rightarrow 17.7 \rightarrow 17.5^{\circ})$
 - : virtually no change $(-1.7 \rightarrow -1.6 \rightarrow -1.6 \%)$
 - : virtually no change? $(7.2 \rightarrow 7.3 \rightarrow 8.1 \circ)$

2022-07-25 Nayuta Users' Meeting

INTRODUCTION \Rightarrow OBSERVATION \Rightarrow <u>**RESULTS**</u> \Rightarrow DISCUSSION

Results - Ceres

- ➢ Phase curve at NIR ≈ optical data
- > parameters

0

0

° P

0

- : virtually no change $(17.9 \rightarrow 17.7 \rightarrow 17.5^{\circ})$
 - : virtually no change $(-1.7 \rightarrow -1.6 \rightarrow -1.6 \%)$
 - : virtually no change? $(7.2 \rightarrow 7.3 \rightarrow 8.1 \circ)$
- Consistent with previous work

MasieroJ+ (2022), PSJ, 3, 90.

2022-07-25 Nayuta Users' Meeting

INTRODUCTION \Rightarrow OBSERVATION \Rightarrow <u>**RESULTS**</u> \Rightarrow DISCUSSION

Results - Vesta

\succ Phase curve at NIR \neq optical data

> parameters

: increases as wavelength $(7.2 \rightarrow 7.7 \rightarrow 8.3^{\circ})$

\succ **First data**

2022-07-25 Nayuta Users' Meeting

INTRODUCTION \Rightarrow OBSERVATION \Rightarrow **RESULTS** \Rightarrow DISCUSSION

slope-albedo law holds in Near-IR too!

2022-07-25 Nayuta Users' Meeting

INTRODUCTION \Rightarrow OBSERVATION \Rightarrow RESULTS \Rightarrow **<u>DISCUSSION</u>**

New findings

 Location for two are different may be because of compositional difference (V-type VS C-type).

INTRODUCTION \Rightarrow OBSERVATION \Rightarrow RESULTS \Rightarrow **<u>DISCUSSION</u>**

New findings

 Location for two are different may be because of compositional difference (V-type VS C-type).

• Ceres:

- No change.
- Likely $D/\lambda \gg 5$ for all λ
- $(D \gg 5 \lambda_K \sim 10 \ \mu m)$
- or already $D \ll 5\lambda_U \sim 1.5 \mu m$.

New findings

 Location for two are different may be because of compositional difference (V-type VS C-type).

• Ceres:

- No change.
- Likely $D/\lambda \gg 5$ for all λ
- $(D \gg 5 \lambda_K \sim 10 \ \mu m)$
- or already $D \ll 5\lambda_U \sim 1.5 \mu m$.

• Vesta:

- A sudden change when $\lambda = \lambda_K$
- **D** ~ 10 μm??

New findings

 Location for two are different may be because of compositional difference (V-type VS C-type).

• Ceres:

- No change.
- Likely $D/\lambda \gg 5$ for all λ
- $(D \gg 5 \lambda_K \sim 10 \ \mu m)$
- or already $D \ll 5\lambda_U \sim 1.5 \mu m$.

• Vesta:

- A sudden change when $\lambda = \lambda_K$
- **D** ~ 10 μm??

Large asteroids are expected to be covered with fine particles (≤ **20 μm size)** due to large gravity

2022-07-25 Nayuta Users' Meeting

INTRODUCTION \Rightarrow OBSERVATION \Rightarrow Results \Rightarrow **<u>Discussion</u>**

New findings

 Location for two are different may be because of compositional difference (V-type VS C-type).

• Ceres:

No change.

- Likely $D/\lambda \gg 5$ for all λ
- $(D \gg 5 \lambda_K \sim 10 \ \mu m)$
- or already $D \ll 5\lambda_U \sim 1.5 \mu m$.
- Vesta:
 - A sudden change when $\lambda = \lambda_K$
 - **D** ~ 10 μm??

2022-07-25 Nayuta Users' Meeting

INTRODUCTION \Rightarrow OBSERVATION \Rightarrow RESULTS \Rightarrow **<u>DISCUSSION</u>**

Conclusion

- Nearly world-first NIR polarimetry of asteroids
- > The first observation to see the polarimetric behavior at small D/λ in Vesta.
 - Vesta: D ~ 10 μ m?
 - Ceres: inconclusive
 - **Strong point**: This is not a lower/upper bound, but quite an exact value.

Further investigation needed:

• Is the lab experiment applicable to real asteroids?