触角銀河に出現した超新星 2007sr

坂根悠介¹、阿南 徹¹、島田雅史¹、高妻真次郎¹、山岡 均¹、内藤博之²

1)九州大学理学部
2)兵庫県立西はりま天文台

SN 2007sr in the Antennae Galaxies

Yuusuke Sakane¹, Tetsu Anan¹, Masafumi Shimada¹, Shinjirou Kouzuma¹, Hitoshi Yamaoka¹, Hiroyuki Naito²

1) Faculty of Sciences, Kyushu University, Chuo-ku, Fukuoka, 810-8560, Japan

2) Nishi-Harima Astronomical Observatory, Sayo-cho, Hyogo 679-5313, Japan

E-mail: sakane@phys.kyushu-u.ac.jp

(Received 2008 September 8)

Abstract

Interacting galaxies yield plenty of gravitational-collapsed supernovae (SNe). The Antennae Galaxies (NGC 4038/39) are good examples of the interacting galaxies. We observed SN 2007sr appeared in the Antennae galaxies on 2007 Dec. 19 and 26 UT at Nishi-Harima Astronomical Observatory. Then we got images and spectra of SN 2007sr. We compare them with some of other supernovae and discuss about the age and property of SN 2007sr.

Key words: photometry – spectroscopy – supernova: individual (SN 2007sr)

1. Introduction

触角銀河と呼ばれる銀河は、NGC 4038 とNGC 4039 の二つの渦巻き銀河が衝突している最中のものであり、 その姿が昆虫の触角のように見えることから触角銀河と呼ばれている。また、2 つの銀河が重なり合っている 部分ではガスやダストの密度が非常に高く、O 型星 (29,000K~) や B 型星 (10,000~29,000K) といったとり わけ高温で質量の大きい星が数多く形成されている。そのため、そのような寿命の短い星が、重力崩壊をおこ して超新星爆発する様子が多数観測できるのではないかと期待されている。電波での触角銀河観測も進んでお り、スペクトル傾斜から熱的放射が三分の一、超新星残骸によるシンクロトロン放射が三分の二を占めている ことが確認されている (Susan and James 2000)。

超新星はスペクトルなどの観測的性質によって分類され、それがメカニズムと関連づけられている。スペ クトルによる分類では、スペクトル中に H の吸収線が存在しない I 型と H が存在する II 型とに分けられる。 さらに I 型の中でも、Si の吸収線が見られる Ia 型、Si の吸収線が見えず He の吸収線が見られる Ib 型、どち らも見えないものを Ic 型としている。一方、爆発のメカニズムは大きく二つに分けられる。片方は、連星系 をなす白色矮星が、伴星からの降着ガスで中心密度が高くなり、核爆発を起こす核爆発型超新星であり、Ia 型 として観測される。もう片方は、中心核において鉄の光分解などを引き金に重力崩壊し、反動で星全体が爆発 する重力崩壊型で、II型、Ib型、Ic型として観測されている。

超新星爆発から生じるガスやダストの濃淡は、さらなる星生成を促すと考えられている。そのため、触角 銀河では加速的に星生成が行われ、それに伴い超新星爆発を引き起こす。そのような星形成領域を集中的に継 続的に観測し続けることで、超新星爆発の星形成への寄与や、星周物質との相互作用による光度変化やエネル ギー交換などといった多くの情報が得られるであろう。

2007 年 12 月 18.53 日 (UT, 以下同様) にカタリーナ全天サーベイ *1 により触角銀河で SN 2007sr が発見された (Drake et al. 2007)。そこでこの超新星について 12 月 19 日、26 日に西はりま天文台で得たデータをもとに解析、考察したことについて報告する。

2. 観測ログ

西はりま天文台の2メートルなゆた望遠鏡を用いて、2007年12月19日に撮像、分光観測、26日に撮像観測 を行った。撮像観測は可視光撮像装置 (MINT)を用いて19日にBフィルター露出時間60秒、Vフィルター 露出時間300秒、Rcフィルター露出時間120秒、Icフィルター露出時間120秒でオブジェクトフレームを3 枚ずつ撮像し、26日にBフィルター露出時間240秒、Vフィルター露出時間150秒、Rcフィルター露出時 間60秒、Icフィルター露出時間90秒でオブジェクトフレーム3枚ずつ撮像した。

また、分光に際しては可視光分光器 (MALLS) でスリット幅 5 秒角のものを用いた。露光時間は 2400 秒 とし標準星に HD114330、comparison に Fe-Ne-Ar ランプを用いた。

3. 結果

3-1. 測光

画像解析ソフト IRAF(Image Reduction and Analysis Facility)を用いてそれぞれの画像に bias、flat の一次 処理を施し、超新星の周りの比較星を用いて測光を行った。超新星と比較星の画像を Fig. 1 に、それぞれの 星の位置 (2000 年分点)を Table 1 に示す。比較星と超新星の等級の差を APPHOT というタスクを用いて

	赤経	赤緯
$\rm SN~2007 sr$	12:01:52.80	-18:58:21.7
比較星1	12:01:44.74	-18:56:45.6
比較星2	12:02:04.89	-18:56:29.7
比較星3	12:02:08.98	-18:56:37.6
比較星 4	12:01:58.40	-18:56:13.1
比較星5	12:01:38.49	-18:54:22.1
比較星6	12:01:38.55	-18:55:25.1
比較星7	12:01:37.70	-18:56:22.2
比較星8	12:01:50.53	-18:59:57.6

Table 1. The positions of SN 2007sr and comparison stars.

調べ、その差から超新星の等級を出した。その際、比較星の等級は B、V バンドに Henden field photometry

*1 http://www.lpl.arizona.edu/css/index.html

(Henden 2007) を用い、比較星 1~7を使った。Rc、Ic には USNO-B1.0 (Monet et al. 2003) を用い、比較星 4~8を使用した。19日の B、V、Ic、Rc バンド、26日の B、V バンドによる測光結果をそれぞれ Table 2~7 に示す。

3-2. 分光

得られたデータに対し IRAF の APALL コマンドを用いて処理を行った。得られたスペクトル図を Fig. 2 に 示す。

	カタログ等級 (mag)	機械等級 (mag)	差 (mag)
比較星1	14.391	9.950	4.441
比較星 2	15.406	11.071	4.335
比較星3	16.664	12.259	4.405
比較星 4	16.635	12.416	4.219
比較星 5	16.911	12.440	4.471
比較星 6	17.279	12.934	4.345
比較星7	17.688	13.347	4.341
平均			4.365
			測光結果
超新星		8.996	13.361

Table 2. Photometry of SN 2007sr taken through a B filter on Dec. 19, 2007.

Table 3	. Photome	try of SN	$2007 \mathrm{sr}$ tak	ken through	a B filter	r on Dec.	26, 2007

	カタログ等級 (mag)	機械等級 (mag)	$\mathbf{\not E}$ (mag)
比較星1	14.391	10.061	4.33
比較星 2	15.406	11.1077	4.298
比較星 3	16.664	12.289	4.375
比較星 4	16.635	12.466	4.169
比較星 5	16.911	12.657	4.254
比較星 6	17.279	12.986	4.293
比較星7	17.688	13.372	4.316
平均			4.291
			測光結果
超新星		9.594	13.885

4. SN 2007sr の考察

4-1. 議論

分光の結果、SN 2007sr のスペクトルに Si、S の吸収線があり、H α 線をはじめとする H の輝線、吸収線がない ことからこの超新星は Ia 型超新星(核爆発型)だと分かった。また、吸収線の線幅より膨張速度は 12600km

Sakane et al.

	カタログ等級(mag)	機械等級(mag)	差 (mag)
比較星 1	13.141	8.825	4.316
比較星 2	14.510	10.183	4.327
比較星3	15.424	11.174	4.25
比較星 4	16.031	11.798	4.233
比較星 5	16.238	12.099	4.139
比較星 6	16.404	12.298	4.106
比較星7	16.613	12.526	4.087
平均			4.208
			測光結果
超新星		8.515	12.723

Table 4. Photometry of SN 2007sr taken through a V filter on Dec. 19, 2007.

Table 5. Photometry of SN 2007sr taken through a V filter on Dec. 26, 2007.

	カタログ等級 (mag)	機械等級 (mag)	$\mathbf{\not{E}}(\mathrm{mag})$
比較星1	13.141	9.006	4.135
比較星 2	14.510	10.376	4.134
比較星 3	15.424	11.323	4.104
比較星 4	16.031	11.871	4.160
比較星 5	16.238	12.042	4.196
比較星 6	16.404	12.306	4.098
比較星7	16.613	12.533	4.080
平均			4.129
			測光結果
超新星		9.038	13.167

Table 6. Photometry of SN 2007sr taken through a Rc filter on Dec. 19, 2007.

	カタログ等級(mag)	機械等級(mag)	差 (mag)
比較星 4	15.93	21.80	-5.87
比較星 5	16.08	21.78	-5.70
比較星 6	16.01	21.97	-5.96
比較星7	15.81	21.39	-5.58
比較星 8	16.02	21.98	-5.96
平均			-5.81
			測光結果
超新星		18.19	12.38

と求まった。ただし、後退速度は1641km/sとした。触角銀河では過去 SN 1921A、SN 1947E、SN 2004gt の三つの超新星が発見されている。このうち SN 2004gt は重力崩壊型と確認されているが、SN 2007sr は SN 2004gt に次ぐ重力崩壊型とはならなかった。過去に出現した超新星の位置を Fig. 3 に表す。SN 2007sr の出 現した位置は、銀河衝突の影響が少ない領域であり、短寿命の大質量星起源である重力崩壊型超新星が特に多 SN 2007sr in the Antennae Galaxies $% \left({{{\rm{A}}} \right)$

	カタログ等級(mag)	機械等級 (mag)	差 (mag)
比較星 4	15.34	18.08	-2.74
比較星 5	15.32	18.06	-2.74
比較星 6	15.29	18.05	-2.76
比較星7	15.12	17.92	-2.80
比較星8	15.58	18.40	-2.82
平均			-2.77
			測光結果
超新星		15.79	13.02

Table 7. Photometry of SN 2007sr taken through a Ic filter on Dec. 19, 2007.

いわけではないことと合致すると言えよう。

4-2. 標準等級

機械等級の評価をカタログ等級を用い、B、Vバンドについて行う。12月19日、26日の観測から得られた測 光結果を Table 8 に示す。測光で得られた値をそれぞれ b、v、カタログによる B、V 等級を B、V と表記し ている。また、各バンドごとでのカタログ等級と機械等級の差を Fig. 4、5 に示す。19日、26日の測光デー

	19日 <i>b</i> (mag)	19日v(mag)	26日 <i>b</i> (mag)	26日v (mag)	B (mag)	V (mag)
比較星1	14.315	13.033	14.352	13.153	14.391	13.141
比較星 2	15.436	14.391	15.398	14.505	15.406	14.510
比較星3	16.781	15.382	16.580	15.452	16.664	15.424
比較星 4	16.805	16.006	16.757	16.000	16.635	16.031
比較星5	16.805	16.307	16.948	16.171	16.911	16.238
比較星 6	17.299	16.506	17.277	16.435	17.279	16.404
比較星7	17.712	16.734	17.663	16.662	17.688	16.613
超新星	13.361	12.723	13.885	13.167		

Table 8. Photometry of SN 2007sr.

タをプロットしたものであり、横軸は比較星のカタログ等級、縦軸はその比較星の機械等級とカタログ等級の 差を表している。図より、機器等級がカタログ等級から誤差 ± 0.15 等級の範囲に収まっており、MINT が標 準システムに近いことが確認できる。

次に、等級差の式

$$b - B = (B - V) +$$
$$v - V = (B - V) +$$

から色依存性を求める。Table 8の値から最小二乗法を用いて計算した結果。

$$\begin{array}{ll} 19 \ \square & b-B=-0.141(B-V)+0.133 \ , \ v-V=-0.104(B-V)+0.099 \\ 26 \ \square & b-B=-0.231(B-V)+0.218 \ , \ v-V=0.100(B-V)-0.095 \end{array}$$

Sakane et al.

と求められた。結果を Fig. 6、7 に示す。なお、横軸はその標準星のカタログの B 等級とカタログの V 等級 の差、縦軸はその標準星での機械等級からカタログの差を取ったものである。この式の評価としては、、 が 0 に近いほど観測システムが標準系に近いことがいえる。そのため、、の値から B バンドでの機械等 級とカタログ等級の差が大きく、V バンドよりも標準システムからのずれが大きいことが分かる。原因として は、観測機器の B バンドでの感度の悪さ、短波長の光は散乱されやすいことが影響していると考えられる。

また、機械等級から標準等級への変換として、

$$b - B = '(b - v) + '$$

 $v - V = '(b - v) + '$

という式を考える、同じく最小二乗法から、

$$\begin{array}{ll} 19 \ \square & b-B=-0.031(b-v)+0.028 \ , \ v-V=-0.213(b-v)-0.201 \\ 26 \ \square & b-B=-0.298(b-v)+0.282 \ , \ v-V=0.108(b-v)-0.102 \end{array}$$

と求まった。19日、26日の標準星への変換式を用いて求め直した超新星の標準等級を以下のTable 9に示す。

Table 9. Standard magnitude of SN2007sr						
$19 \boxplus B(mag) 19 \boxplus V(mag) 26 \boxplus B(mag) 26 \boxplus V(mag)$						
超新星	13.352	12.658	13.816	13.191		

4-3. 星間吸収補正

天体からの光は宇宙塵などによって減光を受けている。そこで、星間吸収量を求め天体の星間吸収を受けてい ない状態での等級を求める。 バンドの星間吸収を *A*()としたとき、それぞれのバンドで星間吸収量は

$$A(V) = R \cdot E(B - V)$$
$$A(B) = A(V) + E(B - V)$$

と表せる。Saviane et al. (2008)では NGC 4038/39 について $E(B-V) = 0.14 \pm 0.06$ と示されており、ここでは E(B-V) = 0.14 という値を用いて計算を行った。また、R = 3.1 とした。その結果 A(V) = 0.434、A(B) = 0.574 と求まった。星間吸収を除いた超新星の等級を以下の Table 10 に示す。ただしこれには触角 銀河による吸収は考慮されていない。観測スペクトルに Na D I の細い吸収が見えないことから、触角銀河内の吸収量は十分に小さいことが推測される。そのため、星間吸収のみを考えている。

Table 10. Standard	magnitude of SN	2007sr without	interstellar	absorption
--------------------	-----------------	----------------	--------------	------------

	19 \blacksquare B(mag)	19 \blacksquare V(mag)	26 \blacksquare B(mag)	$26 \boxminus V(mag)$
超新星	12.778	12.224	13.242	12.757

4-4. 極大日の推定

先に求めた等級から、19日と26日の間で色指数 B-V を Table 11 に示す。

SN 2007sr in the Antennae Galaxies

Table 11. $B - V$		
	19 $\blacksquare B - V(mag)$	$26 \boxminus B - V(mag)$
超新星	0.554	0.485

table 11 より、19 日から 26 日の約 7 日の間に-0.069 等級ほど変位したことが分かる。この結果を SN 2002boのBenetti et al. (2004)の図3、B-V曲線と比較してみた。7日間でのB-Vの変位は、図3の 6、7日前から極大付近での変位に近い事が分かる。

次に SN 2007sr のスペクトル図を、Ia 型超新星である SN 1998dh での極大前後のスペクトル進化を示し た Matheson et al. (2008)の Fig. 17 と比較してみた。その結果 SN 2007sr のスペクトルは SN 1998dh の極 大前に記録されたスペクトル、おおよそ4、5日前のものに近いことがわかる。また、連続光成分が青いこと から、観測を行った 12 月 19 日には、SN 2007sr は極大前であったと考えられる。したがって、測光、分光か ら極大の日は、12月23~26日と考えられる。一方、Pojmanski et al. (2007)は12月16日にV等級で極大 を迎えたと報告しており、Unbriaco et al. (2007)は12月 20.22日のスペクトルが SN 2002boのB 等級が極 大となってから4日後のものに似ていると報告している。これら二つの報告では、いずれも16日付近で極大 としており、我々の結果と相反するものであった。

まとめ 5.

西はりま天文台で観測した SN 2007sr の観測結果から、SN 2007sr の等級やスペクトルを調べ、極大日など の推定を行った。今回は、追観測したデータのおかげでより超新星についての変化について調べることができ た。超新星の変化を追うためには、数多くの正確なデータが必要になってくる。シーイングや、各天文台での 固有の特徴により、データにばらつきが出ると考えられるが、観測が数多くの超新星でかつ長期に渡り行われ ていけば、やがては超新星全般の正確な性質や様子の解明につながっていく。そのためにも、とりわけ超新星 が多く出現すると予想される触角銀河にこれからも注目し、観測を継続することが大きな意味を持ってくるで あろう。

《参考文献》

- Benetti, G., Meikle, P., Stehle, M., Altarilla, G., Desidera, S., Folattelli, G., Goobar, A., Mattila, J., Mendez, J., Navasardyan, H., Pastorello, A., Patat, F., Riello, M., Ruiz-Lapuente, P., Tsvetkov, D., Taratto, M., Mazzali, P., Hillebrandt, W., 2004, Mon.Not.R.Astron.Soc., 348, 261-278
- Drake, A.J., Djorgovski, S.G., Williams, R., Mahabal, A., Graham, M.J., Beshore, E.C., Larson, S.M., 2007, CBET 1172
- Henden, 2007, http://www.aavso.org/observing/charts/phot/ngc4038.dat
- Matheson, T., Kirshner, R.P., Challis, P., Jha, S., Garnavichi, P.M., Berlind, P., Calkins, M.L., Blondin, S., Balog, Z., Caldwell, N., Dendy Concasson, K., Falco, E.E., Graves, G.J.M., Huchra, J., Mader, J.A., Mahdavi, A., Phelps, M., Rines, K., Song, I., Wilkes, 2008, J.P., Kuraszkiewicz, in press (arXiv:0803.1705v1)

Monet et al., 2003, AJ, 125, 984-993

Pojmanski, G., Prieto, J.L., stanek, Beacom, J.F., 2008, CBET 1213

Susan, G.N., James, S., 2000, AJ, **120**, 670-696

Saviane, I., Momany, Y., da Costa, G S., Rich, R.M., Hibbard, J.E., 2008, AJ, 678, 179-186

Umbriaco, G., Pietrogrande, T., Di Mille, F., 2007, CBET 1174

SN 2007sr in the Antennae Galaxies $% \left({{{\rm{A}}} \right)$

Fig. 1. The positions of SN 2007sr and comparison stars. North is on top. East is right.

Fig. 2. Spectrum of SN 2007sr on Dec. 20. The slit width was 5 arcseconds.

SN 2007sr in the Antennae Galaxies $% \left({{{\rm{A}}} \right)$

Fig. 3. The positions of supernovae discovered in the Antennae Galaxies.

Sakane et al.

Fig. 4. (b-B) recidual vs B magnitude of comparison stars are shown. squares:Data on Dec. 19. crosses:Data on Dec. 26.

Fig. 5. (v-V) recidual vs V magnitude of comparison stars are shown.

Fig. 6. (b-B) recidual vs (B-V) of comparison stars are shown.

Fig. 7. (v-V) recidual vs (B-V) of comparison stars are shown.