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Abstract

A dense nationwide seismic network and high seismic activity in Japan have provided a large volume of high-

quality data, enabling high-resolution imaging of the seismic structures defining the Japanese subduction zones. Here, the
role of H,O in generating earthquakes in subduction zones is discussed based mainly on recent seismic studies in Japan
using these high-quality data. Locations of intermediate-depth intraslab earthquakes and seismic velocity and attenuation
structures within the subducted slab provide evidence that strongly supports intermediate-depth intraslab earthquakes,
although the details leading to the earthquake rupture are still poorly understood. Coseismic rotations of the principal
stress axes observed after great megathrust earthquakes demonstrate that the plate interface is very weak, which is probably
caused by overpressured fluids. Detailed tomographic imaging of the seismic velocity structure in and around plate boundary
zones suggests that interplate coupling is affected by local fluid overpressure. Seismic tomography studies also show the
presence of inclined sheet-like seismic low-velocity, high-attenuation zones in the mantle wedge. These may correspond to
the upwelling flow portion of subduction-induced secondary convection in the mantle wedge. The upwelling flows reach the
arc Moho directly beneath the volcanic areas, suggesting a direct relationship. H,O originally liberated from the subducted
slab is transported by this upwelling flow to the arc crust. The H,O that reaches the crust is overpressured above hydrostatic
values, weakening the surrounding crustal rocks and decreasing the shear strength of faults, thereby inducing shallow inland
earthquakes. These observations suggest that H,O expelled from the subducting slab plays an important role in generating
subduction zone earthquakes both within the subduction zone itself and within the magmatic arc occupying its hanging wall.

Keywords: H,O, Fluid overpressure, Weak fault, Subduction zone, Earthquake generation mechanism, Fluid-related

embrittlement, Mantle upwelling flow.

1. Introduction

New oceanic plates are produced at mid-ocean ridges by
the upwelling of materials from the mantle directly below.
The production of new oceanic plates at mid-ocean ridges
does not expand the Earth’s surface, as an equal amount
of surface material returns downward back into the mantle.
This consumption of surface materials occurs at “subduction
zones”, where oceanic plates sink downward into the mantle.
At a subduction zone, two plates collide, with one overrid-
ing the other, forcing the heavier one back into the mantle.
The heavier oceanic plate subducts beneath the lighter con-
tinental plate. This subduction of oceanic plates causes high
seismic activity along the margin between the plates. In-
deed, most of world’s large earthquakes occur in subduction
zones with >90% of global seismic moment release occur-
ring there (Pacheco and Sykes, 1992). Plate subduction also
causes volcanic activity along the subduction zone, forming
belt-like volcanic chains on the upper plate distributed nearly

parallel to the trench axis. Viewing the Earth as a system,
subduction zones are the sites where oceanic plates are recy-
cled back into the mantle, where material flux back into the
deep mantle takes place. Subduction of an oceanic plate in
the upper mantle beneath a volcanic arc, and the ultimate fate
of the plate as it plunges downward into the lower mantle,
play important roles in the recycling of chemical elements
into the Earth’s interior.

Before subduction, an oceanic plate contains water as pore
water and OH-bearing minerals. This is expelled by dewa-
tering and dehydration as the oceanic plate subducts and its
temperature and pressure increase, generating aqueous fluids
within the slab. Being less dense than the surrounding rocks,
the fluids migrate upward to the upper plate interface. A por-
tion migrates further upward along the plate interface, with
the remaining portion entering the overlying mantle wedge.
The fluids that enter the mantle wedge directly above react
chemically with the surrounding rocks and migrate even fur-
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Fig. 1. Tectonic setting around the Japanese Islands.

ther upward within the mantle wedge, finally reaching the
arc crust.

The H,O-rich fluids thus formed play an important role
in the processes occurring in the crust and upper mantle.
The presence of fluids strongly influences the deformation
of crustal rocks. The pore-fluid pressure affects the me-
chanical processes that control rock deformation and con-
tributes to decrease fault strengths. Fault frictional strength
is significantly reduced by fluid overpressure if a Coulomb-
type frictional strength criterion is applicable to the fric-
tional regime (effective stress law). Here, fluid overpressure
refers to the state in which the fluid pressure prevailing in
the pore/crack/fracture space is greater than the hydrostatic
fluid pressure. Fluids strongly influence the deformation of
mantle rocks as well. The presence of fluids lowers the vis-
cosity coefficient, significantly affecting the flow pattern in
the mantle wedge. The H,O-rich fluids also contribute to the
formation of arc volcanoes by lowering the melting point of
mantle rocks. Recent studies have shown that the generation
of the three main types of earthquakes in subduction zones,
i.e., interplate, intraslab, and shallow inland intraplate earth-
quakes, are all closely related to the H,O-rich fluids thus
formed within the subducted slab, and then transported to
the shallow plate interface or the arc crust.

Japan is located in one of the most well-studied subduc-
tion zones of the world. NE Japan lies on the North Amer-
ican plate (or the Okhotsk Plate) and SW Japan lies on the
Eurasia plate (or Amuria plate) as shown in Fig. 1. These
two plates converge along the eastern margin of the Japan

Sea in the north, and along the Itoigawa—Shizuoka Tectonic
Line in the south. Two oceanic plates subduct beneath the
Japanese Islands. In NE Japan, the Pacific plate subducts
beneath the North American plate west—northwestward at
a rate of 8-9 cm/yr along the Kuril and Japan trenches,
and beneath the Philippine Sea plate at a rate of about 6
cm/yr along the Izu—Bonin Trench (DeMets et al., 1994).
In SW Japan, the Philippine Sea plate subducts beneath the
Eurasia plate northwestward at 3—5 cm/yr along the Sagami
Trough in the east and along the Nankai Trough in the west
(Seno et al., 1993, 1996; Wei and Seno, 1998; Heki and
Miyazaki, 2001; Miyazaki and Heki, 2001). This plate con-
vergence causes very high seismic activity in the Japanese
Islands. Many disastrous earthquakes have occurred repeat-
edly, causing extensive damage and casualties, such as the
2011 My, 9.0 Tohoku-Oki earthquake. A dense nationwide
seismic network recently constructed covers the whole area
of the Japanese Islands (e.g., Okada et al., 2004). This spa-
tially dense seismic network and the high seismic activity
have provided a large volume of high-quality seismic data,
enabling high-resolution imaging of the deep seismic struc-
tures of the Japanese subduction zones. Many studies have
been carried out in this region using data acquired by the
dense seismic network. These studies have revealed the de-
tailed structure of the subducting plates and the associated
mantle wedges and overlying crust, and have contributed to
the understanding of earthquake generating mechanisms in
the subduction zones, especially in the shallow portions.
Here, I review recent seismic studies on the role of H,O in
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Fig. 2. Across-arc vertical cross-sections showing correlation between intraslab earthquakes and phase transformation in the NE Japan and Costa Rica
subduction zones (Hacker ef al., 2003a). (a) and (c) thermal model. (b) and (d) Metamorphic facies and earthquake foci.

generating subduction zone earthquakes, with an emphasis
on the Japanese Islands as a typical example of subduction
zones, and inferred mechanisms are discussed.

2. Intermediate-depth Intraslab Earthquakes

At the depths of intraslab earthquakes, the lithostatic pres-
sure is too high and frictional strength too large to allow brit-
tle faulting. Therefore, there must be some special mecha-
nism that weakens shear strength and drives the generation of
intraslab earthquakes. Dehydration embrittlement has been
proposed as a possible mechanism for reducing the effec-
tive normal stress exerted by overpressured fluid and reduc-
ing shear strength, allowing intraslab earthquakes to occur
(e.g., Griggs and Handin, 1960; Raleigh and Paterson, 1965;
Raleigh, 1967; Meade and Jeanloz, 1991; Nishiyama, 1992;
Green and Houston, 1995; Kirby, 1995; Kirby et al., 1996;
Seno and Yamanaka, 1996).

Seismological and petrological studies on subducted slabs,
and the materials composing the crust and mantle of sub-
ducted slabs, have provided evidence supporting the hy-
pothesis that intermediate-depth intraslab earthquakes are
triggered by overpressured fluids but not necessary through
the traditional dehydration embrittlement mechanism. Here,
intermediate-depth refers to a depth range of 60-300 km.
Hacker et al. (2003a, b) estimated the locations of the areas
within the slabs that contain hydrous minerals in four of the
world’s typical subduction zones based on the thermal struc-
ture of the slabs, and experimentally derived phase diagrams
of the crust and mantle materials. As an example, Fig. 2

shows the results for two subduction zones: NE Japan and
Costa Rica. As shown in the figure, comparing this infor-
mation with hypocenter locations revealed that intermediate-
depth intraslab events occur within the confined part of the
slab retaining the hydrous minerals, where dehydration is ex-
pected to occur. Earthquakes mostly do not occur within the
other part of the slab, where hydrous minerals are not ex-
pected to be found.

Yamasaki and Seno (2003) estimated the dehydration loci
of metamorphosed slab crust and serpentinized slab mantle,
using phase diagrams of the crust and mantle materials and
the thermal structure of the slab, for six of the world’s typical
subduction zones. Comparing these loci with the hypocenter
distribution of intermediate-depth intraslab events revealed
that the lower plane seismicity of the double-planed deep
seismic zone in the slab occurs at the lower dehydration
loci of the serpentinized mantle, whereas the upper plane
seismicity is located at the dehydration loci of the meta-
morphosed oceanic crust (Fig. 3). This strongly supports
the hypothesis that intermediate-depth intraslab seismicity
is caused by fluid-related embrittlement, and that embrittle-
ment also causes the formation of the double seismic zone
within the slab, as previously suggested by Peacock (2001).
The earthquakes are concentrated along the dehydration loci
of the metamorphosed crust, which forms the upper seis-
mic plane, and the dehydration loci of the serpentine (the
lower boundary of the hydrated slab mantle), which forms
the lower seismic plane. The formation of the lower seismic
plane along the dehydration loci of the serpentine further im-
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Fig. 3. Across-arc vertical cross-sections of earthquakes and dehydration loci within the subducting slabs beneath (a) Tohoku and (b) N Chile (Yamasaki
and Seno, 2003). Dehydration loci of metamorphosed crust and serpentinized mantle are shown by the green lines and red broken or dotted lines,
respectively, on vertical cross-sections along the profiles shown in the inset maps. Red broken and dotted lines are based on the phase diagrams by
Ulmer and Trommsdorff (1995) and Wunder and Schreyer (1997), respectively. Blue dots are earthquake foci. Thermal structure is shown by isothermal

contours.

plies that dehydration reactions are greater when materials
reach the facies boundary in the slab mantle.

If even the deep part of the slab mantle is hydrated be-
fore its subduction and intermediate-depth intraslab earth-
quakes are caused by dehydration-derived fluids as discussed
above, almost all subduction zones are expected to have
double seismic zones within the slabs. Moreover, the sep-
aration between the upper and lower seismic planes is ex-
pected to decrease with decreasing age of the slab. Brudzin-
ski et al. (2007) confirmed this expectation by investigat-
ing intermediate-depth intraslab seismicity for 16 subduction
zones based on global seismicity data accurately relocated
by Engdahl et al. (1998) and Engdahl (2006). They demon-
strated that such double seismic zones could be observed in
all of the 16 subduction zones they investigated, and that the
separation of the double seismic zone increases with age, as
shown in Fig. 4.

The recent resolution of the hypocenter distribution and
seismic velocity structure within the subducted slabs, using
data from the dense nationwide seismic network in Japan,
has provided further evidence supporting the dehydration-
related embrittlement hypothesis for the generation of
intermediate-depth intraslab earthquakes. More detailed spa-
tial correlations between concentrated seismicity, the dehy-
dration loci of metamorphosed crust, and changes in seismic
velocity within the slab crust, have been detected for the Pa-
cific plate subducted beneath eastern Japan as described be-

low.

Studies on seismic tomography, hypocenter locations, and
focal mechanisms have made it possible to identify the
complex structure of the oceanic plates subducting beneath
Japan. The configuration of the subducting Pacific plate
was estimated by precisely relocating earthquake hypocen-
ters and by using focal mechanism information for those
earthquakes (Kita et al., 2006; Nakajima et al., 2009b). Ar-
rival time data of P-to-S and S-to-P converted waves at the
upper plate interface from intermediate-depth events were
also used for the estimation (Matsuzawa et al., 1986, 1990;
Hasegawa et al., 1994; Zhao et al., 1997b). Although the
configuration of the Philippine Sea plate subducting beneath
SW Japan had been estimated mainly on the basis of seis-
micity data by setting the plate interface to coincide with
the upper envelope of intraslab events (e.g., Mizoue et al.,
1983; Kasahara, 1985; Yamazaki and Ooida, 1985; Ishida,
1992; Noguchi, 1998, 2007; Miyoshi and Ishibashi, 2004;
Hori, 20006), it was poorly defined because only limited seis-
mic activity is associated with the subduction of this plate.
Moreover, seismic reflection and refraction surveys recently
carried out in SW Japan suggest that the location of the plate
interface is several kilometers shallower than the upper limit
of intraslab seismicity (Kodaira et al., 2000, 2002, 2004,
Kurashimo et al., 2002; Nakanishi et al., 2002). These ob-
servations imply that the upper envelope of intraslab seismic-
ity does not necessarily correspond to the plate interface. A
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recent double-difference tomography study by Hirose et al.
(2008a, b) resolved this problem and clearly imaged the crust
portion of the Philippine Sea plate as a layer with low S-wave
velocity and high V,/V, (P-wave velocity to S-wave veloc-
ity ratio), which enabled the location of the Philippine Sea
plate to be determined at depths of 20-60 km. The deeper
portions (60-200 km) of the plate were determined based on
a seismic tomography-derived upper envelope of the high-
seismic-velocity slab (Nakajima and Hasegawa, 2007a).

The geometry of the subducting Pacific and Philippine Sea
slabs estimated in these ways is shown by contours in Fig. 5.
The estimated configuration shows that the Philippine Sea
slab subducting under SW Japan undulates down to depths of
60-200 km, and is continuous from Kanto to Kyushu with-
out disruption or splitting, even within areas north of the Izu
Peninsula. The contact zone between the Pacific and Philip-
pine Sea slabs, as estimated from seismic tomography and
focal mechanism studies (Nakajima et al., 2009b; Uchida et
al., 2009, 2010; Nakajima and Hasegawa, 2010), is present
across a broad area beneath the Kanto area, correlating with
the location of the Kanto Plain. This broad contact zone be-
neath the Kanto Plain contributes to an anomalously deep
interplate and intraslab earthquake activity due to the low
temperatures that result from the subduction of the Philip-
pine Sea slab immediately above the Pacific slab (Hasegawa
et al., 2009; Nakajima et al., 2009b; Uchida et al., 2009,
2010; Nakajima and Hasegawa, 2010).

Kita et al. (2006) detected a pronounced belt-like concen-
tration of seismicity in the upper plane of the double seismic
zone, nearly parallel to the ~80 km isodepth contour of the
upper surface of the Pacific slab beneath Tohoku (Figs. 6(a),

(c)) and Hokkaido. This pronounced seismic area, termed
an ‘upper-plane seismic belt’, is located within the oceanic
crust at a depth near a metamorphic facies boundary (A in
Fig. 6(a)) in the crustal material, suggesting that it is asso-
ciated with intraslab earthquakes generated by dehydration-
related embrittlement. As shown in Fig. 6(b), seismic tomog-
raphy imaging indicates that low-seismic-velocity slab crust
persists down to the depth of this upper-plane seismic belt,
but not below (Tsuji et al., 2008), suggesting that a phase
transformation and eclogite formation occur in the slab crust
at this depth.

The depth at which this phase transformation takes place
is expected to depend on the temperature within the slab
crust. If this is the case, local low-temperature conditions
in the Pacific slab immediately below the slab contact zone
beneath the Kanto area should cause a delay in phase trans-
formation, resulting in local deepening of the upper-plane
seismic belt and of the down-dip end of the low-seismic-
velocity oceanic crust. As expected, both the upper-plane
seismic belt and the low-velocity oceanic crust deepen be-
neath the slab contact zone in the Kanto area. Hasegawa et
al. (2007) showed that the upper-plane seismic belt beneath
the Kanto area is oblique to the ~80 km iso-depth contour,
deepening toward the north from a depth of ~100-140 km
along a trend nearly parallel to the down-dip edge of the
slab contact zone (Fig. 6(c)). A seismic tomography study
by Nakajima et al. (2009a) indicated that the low-seismic-
velocity region in the slab crust extends to the uppermost
depths where the obliquely trending upper-plane seismic belt
is observed (Fig. 6(d)). These observations strongly sup-
port an interpretation that low-temperature conditions asso-
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al., 1990; Uchida et al., 2009) are also shown as light blue ellipses. The source area of the 2011 Tohoku-Oki earthquake is shown by a dashed ellipse.
Red triangles denote Quaternary volcanoes. Deep low-frequency tremors/earthquakes are shown as dots.

ciated with the slab-slab contact zone beneath the Kanto area
cause a delayed (and so deeper) onset of eclogite-forming
phase transformations. A similar local deepening of the
upper-plane seismic belt is also seen in the Pacific slab under
the Hokkaido corner, which is probably caused by thermal
shielding due to the cold subducted forearc crust that caps the
slab there, and the resulting delay of eclogite-forming phase
transformation in the oceanic crust (Kita et al., 2010). These
observations also support the fluid-related embrittlement hy-
pothesis that intermediate-depth intraslab earthquakes are
caused by highly-reduced effective normal stress by over-
pressured fluids expelled from the slab due to dehydration-
related phase transformations.

The locations of the upper and lower seismic planes of the
double seismic zone are likely prescribed by the dehydra-
tion loci of the metamorphosed slab crust and serpentinized
slab mantle, respectively, as described above (Yamasaki and
Seno, 2003; Brudzinski ef al., 2007). At shallower depths,
these two dehydration loci are nearly parallel to each other,
but at deeper depths, the dip of the lower dehydration locus
becomes less steep and the upper and lower dehydration loci

eventually merge (see Fig. 3). The upper and lower seis-
mic planes of the double seismic zone in Tohoku also merge
at a depth of about 150 km (Umino and Hasegawa, 1975;
Hasegawa et al., 1978a, b), suggesting that they just trace
the dehydration loci of the slab crust and slab mantle (Seno
and Yamanaka, 1996). Serpentinized mantle materials can
exist within the area between the upper and lower seismic
planes because of lower temperature conditions there. Seis-
mic waveform data recorded by the nationwide dense seis-
mic network in Japan have allowed precision imaging of the
internal structure of the subducting slab.

A recent high-resolution seismic attenuation tomography
study seems to have detected this serpentinized mantle por-
tion, identifying it as existing in low-Q, areas. Across-arc
vertical cross-sections of Q p" in Tohoku (Fig. 7; Nakajima
et al., 2013) clearly show the existence of low-Q , zones in
the area between the upper and lower seismic planes, par-
ticularly in the deepest portion of this wedge-shaped inter-
plane area (Figs. 7(b) and 7(e)). As the slab subducts, ser-
pentinized mantle materials in the lowermost portion of the
lower seismic plane decompose and release H,O, causing
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(a) Across-arc vertical cross-section showing the location of intraslab earthquakes in central Tohoku (Kita et al., 2006). Intraslab events are

shown by open circles. A and B indicate facies boundaries estimated based on the phase diagram by Hacker et al. (2003a) and the thermal structure by
Peacock and Wang (1999). A: boundary between jadeite lawsonite blueschist and lawsonite amphibole eclogite facies. B: boundary between lawsonite
amphibole eclogite and eclogite facies. (b) Across-arc vertical cross-section showing variations in S-wave velocity in central Tohoku (Tsuji et al., 2008).
S-wave velocities are shown by the color scale at the bottom of figure. The upper interface and the Moho of the Pacific plate are shown as solid lines.
The facies boundary A shown in (a) is shown here as a broken line. (c) Distribution of earthquake foci within the crust of the Pacific slab. Events at
0-10 km below the upper plate surface are shown as blue dots, and the upper plane seismic belt is pink. (d) S-wave velocity distribution in the crust of
the Pacific slab on a curved plane 5 km below the upper plate surface (Nakajima et al., 2009b). The slab-slab contact zone beneath the Kanto area is
delineated by two broken green curves. Black broken curves and red triangles show iso-depth contours of the upper surface of the Pacific slab and the

location of active volcanoes, respectively.

lower-plane seismicity. Then H,O migrates upward passing
through the serpentinized layer corresponding to the lower
seismic plane and finally hydrates mantle materials imme-
diately above the top of the layer. This process repeats as
the slab subducts. Thus, H,O or the serpentinized mantle
materials are expected to accumulate in the wedge-shaped
interplane area, especially in its deepest portion, which is ac-
tually observed in the slab mantle beneath Tohoku by seismic
attenuation tomography (Figs. 7(b) and 7(e)).

As described above, locations of intraslab seismicity and
the seismic velocity and attenuation structures within sub-
ducting slabs strongly support the fluid-related embrittle-
ment hypothesis for generating intermediate-depth intraslab
events. The fluid-related embrittlement posits that the brit-
tle fracture takes place because of the decrease in effective
normal stress due to the pore pressure of H,O released by
the dehydration of slab materials. This mechanism should
work at shallow depths. In fact, by performing triaxial com-
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pression tests of serpentinite at confining pressures up to
0.5 GPa, Raleigh and Patterson (1965) found that a brittle
fracture took place at temperatures higher than 375°C while
the plastic deformation occurred below 340°C. However,
it is not evident whether the same mechanism is applicable
to intermediate-depth events that occur at depths of much
higher confining pressures, since the effective stress law does
not work efficiently below the brittle-ductile transition depth
(e.g., Hirth and Beeler, 2015). Moreover, some of the candi-
date dehydration reactions which cause the dehydration em-
brittlement have negative Clapeyron slopes. In that case,
the total volume change associated with the dehydration be-
comes negative, which might work toward suppressing the
hydraulic instability.

Some laboratory experiments, however, have shown that
hydraulic embrittlement actually takes place even in the case
that the confining pressure is higher than the brittle-ductile
transition depth and the dehydration reaction has a negative
Clapeyron slope (e.g., Dobson et al., 2002; Jung et al., 2004,
2009). On the contrary, other experimental studies argue
that the unstable fault behavior does not develop at such a
pressure range (e.g., Chernak and Hirth, 2010, 2011; Proctor
and Hirth, 2015). As above, the details of the process that
actually lead to the earthquake rupture are still being debated
and further investigations are needed. Since intermediate-
depth events actually occur at the dehydration boundaries
within the slab, some sort of hydraulic fracture might take

place due to the excess pore fluid pressure locally formed for
some reason. Alternatively, intermediate-depth earthquakes
are generated both by the fluid-related embrittlement and the
thermal shear instability (e.g., Ogawa, 1987; Hobbs and Ord,
1988; Karato et al., 2001; Kelemen and Hirth, 2007): the
local excess pore fluid pressure might cause initiation of the
earthquake rupture via hydraulic fracture, then triggering the
subsequent earthquake ruptures through the thermal shear
instability. In any case, it is estimated that H,O released by
the dehydration of slab materials plays an important role in
generating intermediate-depth intraslab earthquakes.

3. Interplate Earthquakes

Shallow portions (<~25-50 km) of the interface between
the subducting oceanic plate and the overriding continen-
tal plate in subduction zones (megathrust) host the world’s
largest earthquakes, and the majority of seismic energy on
the Earth is released there (e.g., Kanamori, 1978). It is
known that seismic coupling coefficients, the ratio of seismic
slip to total interplate slip, are not 100% and vary by loca-
tion on the megathrust. This observation suggests that some
interplate slip is accommodated by aseismic slip. The seis-
mic coupling coefficient on the megathrust east of northern
Tohoku is estimated to be ~25%, while that east of south-
ern Tohoku—Kanto is ~10% or less (e.g., Kanamori, 1977;
Kato, 1979; Seno, 1979; Peterson and Seno, 1984; Pacheco
et al., 1993). These coupling coefficients indicate that much
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Fig. 8. Slip distribution of large interplate earthquakes along the megathrust
in the NE Japan subduction zone. Slip distributions of earthquakes with
M > 7 over the last ~70 years are shown by pink contours (Murotani,
2003; Yamanaka and Kikuchi, 2003, 2004) and that of the 2011 To-
hoku-Oki earthquake is shown by black contours (Iinuma et al., 2012).

of the interplate slip is accommodated by aseismic slip in
these regions. Detailed analyses of seismic waveforms for
large interplate events over the last 70 years in the NE Japan
subduction zone have revealed that large slip areas ruptured
successively by large earthquakes lie in the same location
on a given section of the plate interface and that asperities
(locked areas) are persistent features in those areas (e.g., Ya-
manaka and Kikuchi, 2003, 2004). The estimated slip dis-
tributions of large (M > 7) interplate events are shown by
pink contours in Fig. 8, where the large slip areas of the
earthquakes are asperities. Inversions of GPS data on land
provide information on the spatial distribution of interplate
coupling, showing that these asperities are actually located
in areas with strong coupling on the plate boundary (e.g.,
Ito et al., 2000; Nishimura et al., 2000; Suwa et al., 2006;
Hashimoto et al., 2009; Loveless and Meade, 2010).

The 2011 My, 9.0 Tohoku-Oki earthquake, the greatest
earthquake in the modern history of Japan, ruptured a broad
area of the plate boundary east of Tohoku approximately 500
km long and 200 km wide. The slip distribution of this earth-
quake, estimated from crustal deformation data on land and

at the ocean bottom (e.g., [inuma et al., 2012; Ozawa et al.,
2012; Romano et al., 2012), indicates that this event ruptured
several asperities simultaneously as shown in Fig. 8. More-
over, an anomalously large slip exceeding ~50 m occurred in
the shallow portion of the plate interface near the trench axis.
This was the main cause of the incredible tsunami height
along the Sanriku coast of northern Tohoku. Unfortunately,
this large asperity patch on the shallow plate interface near
the trench axis had not been detected before the earthquake,
since the GPS network on land is completely insensitive to
the interplate coupling there. This is part of the reason why
the Japanese government’s long-term earthquake forecasts
did not anticipate such a large earthquake to occur in this
subduction zone (http://www.jishin.go.jp/main/index.html).
Figure 8 further shows that even the non-asperity areas on
the plate interface slipped considerably in the Tohoku-Oki
earthquake, demonstrating that several asperity patches, as
well as non-asperity areas, may all slip simultaneously in the
case of such a great earthquake. Actually, analyses of GPS
data on land, before the earthquake, suggested that even non-
asperity areas on the plate interface are partly coupled (e.g.,
Ito et al., 2000; Nishimura et al., 2000; Suwa et al., 2006;
Hashimoto et al., 2009; Loveless and Meade, 2010). Fur-
thermore, slip rates on the asperity patches estimated from
the repeated ruptures of recent large interplate earthquakes
are significantly smaller than the relative rate of plate motion
in this subduction zone (e.g., Yamanaka and Kikuchi, 2003).
These observations indicate that such areas on the plate in-
terface eventually slip in a large episodic slow slip event or
a large earthquake (Kanamori et al., 2006), as actually oc-
curred in the 2011 M, 9.0 event.

What causes asperities to form on the plate interface? Of
course, the question has not yet been resolved, but some
observations suggest that H,O might play a role. Seis-
mic tomography studies show that seismic wave veloci-
ties in the mantle wedge right above the asperity patches
on the megathrust have normal values, whereas those just
above the non-asperity (stably sliding) areas have anoma-
lously low values, indicating that serpentinized mantle ex-
ists there (Mishra et al., 2003; Yamamoto et al., 2006; Zhao
et al., 2007a, b). These low-velocity areas in the forearc
mantle wedge have a high V,,/V; and probably correspond
to hydrated mantle affected by slab-origin H,O. This sug-
gests that serpentinized mantle wedge materials immediately
above the plate interface, formed by the supply of H,O de-
rived from the slab, contribute to the frictional properties on
the megathrust, allowing aseismic slip to occur on the plate
interface due to its stable sliding nature (Peacock and Hynd-
man, 1999).

Pore fluid pressure on the megathrust might make a more
direct contribution. Slow slip events that accompany deep
non-volcanic, low-frequency tremors/earthquakes occur pe-
riodically at intervals of approximately 3 or 6 months at
the down-dip extension of the locked area of the Tokai,
Tonankai, and Nankai earthquakes on the plate interface
in SW Japan (Obara, 2002, 2010; Obara et al., 2004).
Slow slip events that recur regularly at an interval of ap-
proximately 14 months accompanying deep low-frequency
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(a) Across-arc vertical cross-section of V), /Vs in Shikoku, SW Japan and (b) schematic diagram of the interpretation overlaid on the V), /V;

structure (Shelly et al., 2006). V), / Vs is shown by the color scale on the right. Faded areas represent regions of poor resolution. Red and gray dots
are relocated hypocenters of deep low-frequency earthquakes/tremors and ordinary earthquakes, respectively. Deep low-frequency earthquakes/tremors
occur along the plate interface, coincident with the zone of transient slip, while ordinary earthquakes within the slab occur primarily within the lower

crust.

tremors/earthquakes were also detected in the Cascadia sub-
duction zone (Dragert et al., 2001; Rogers and Dragert,
2003). Later, similar slow slip events and deep low-
frequency tremors/earthquakes have been detected in many
plate boundary zones around the world, including the San
Andreas Fault, Alaska, New Zealand, and Mexico (e.g.,
Nadeau and Dolenc, 2005; Peterson and Christensen, 2009;
Payero et al., 2008; Peng and Gomberg, 2010). The low-
frequency tremors/earthquakes are interpreted as accelera-
tions and/or decelerations of slow shear slips on the plate
interface associated with slow slip events (Shelly et al.,
2006; Ide et al., 2007). They are thought to be caused by
overpressured fluids on the plate interface, since they occur
at a depth much deeper than the unstable/stable transition
depth (e.g., Obara, 2002, 2010; Obara et al., 2004). Ac-
tually, precise images of seismic velocity structures show
that those low-frequency tremors/earthquakes occur in ar-
eas with low seismic velocities and anomalously high V,, /V
values, demonstrating the existence of overpressured fluids
there (Kodaira et al., 2004; Shelly et al., 2006; Audet et al.,
2009; Kato et al., 2010). Figure 9 is an example of such pre-
cise seismic velocity structure imaging showing a vertical
cross-section of V,/V; along a line crossing Shikoku, in SW
Japan. The figure clearly shows anomalously high V,/V;
values in the slab crust immediately below the low-frequency
tremors/earthquakes on the plate interface, suggesting a high
fluid pressure there.

Information on earthquake-generating stress fields can be
obtained from stress tensor inversion of earthquake focal
mechanism data. The orientations of the principal stress
axes and the stress ratio can be estimated from the inver-
sion, but we cannot estimate the differential stress magni-

tude. Stress field changes after a large earthquake, if they
exist, provide a unique opportunity to estimate the magni-
tude of the differential stress (e.g., Hardebeck and Hauks-
son, 2001; Wesson and Boyd, 2007). Because of its ex-
tremely large magnitude and the dense broadband seismic
network deployed in the Japanese Islands, temporal changes
in the stress field after the 2011 great Tohoku-Oki earth-
quake were able to be clearly determined using stress ten-
sor inversions (Hasegawa et al., 2011, 2012a). Figure 10
shows the spatial distribution of focal mechanisms obtained
by centroid-moment tensor inversions of broadband seismo-
grams recorded at F-net and Hi-net stations on land (Asano
et al., 2011). The focal mechanisms are shown on vertical
cross-sections along lines normal to the trench axis in the
inset map. This figure clearly shows that thrust fault-type
earthquakes were predominant before the Tohoku-Oki earth-
quake, whereas normal fault-type earthquakes increased sig-
nificantly after the earthquake, suggesting that the Tohoku-
Oki earthquake changed the stress field there.

Stress tensor inversion results for earthquakes before and
after the Tohoku-Oki earthquake near its fault plane are
shown in Fig. 11 (Hasegawa et al., 2011). As the figure
shows, the maximum compressive stress (o) axis before the
earthquake is directed toward the plate convergence, plung-
ing oceanward at an angle of 25-30° for both the north and
south parts of the source area (Figs. 11(a) and 11(c)). After
the Tohoku-Oki earthquake, however, the plunge angle in-
creased significantly by 30-35° (Figs. 11(b) and 11(d)). The
observed angles of rotation of the o, axis due to the earth-
quake are plotted in Fig. 12 on a A9-6 diagram (Hardebeck
and Hauksson, 2001), where A6 is the angle of rotation and
6 is the angle the o axis makes with the fault plane. The fig-
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Fig. 10. Trench-perpendicular vertical cross-sections of centroid-moment tensors determined by Asano et al. (2011) (a)—(f) before and (g)—(1) after the
2011 Tohoku-Oki earthquake (Hasegawa et al., 2012a). The before (a)—(f) and after (g)—(1) pairs represent cross-sections along lines A to F in the inset
map. Blue, green, red, and black ‘beach balls’ denote normal, strike-slip, thrust, and other types of focal mechanisms, respectively. The heavy blue line
shows the plate interface. An inverted triangle marks the position of the trench axis.

ure shows that the ratio of the mainshock stress drop to the
background maximum shear stress is estimated to be 0.5-1.0
(Fig. 12). This indicates that the shear stress that caused the
M, 9.0 Tohoku-Oki earthquake was mostly released by the
earthquake, or that the stress drop during the earthquake was
nearly complete. Adopting the average stress drop of 8 MPa
obtained by observed crustal deformation data on land and at
the ocean bottom (linuma et al., 2012), the magnitude of the
shear stress that caused the Tohoku-Oki earthquake is esti-
mated to be 8—16 MPa. This suggests that the plate interface
is very weak, probably due to the effect of overpressured flu-
ids. If this is the case, the pore pressure ratio, i.e., the ratio
of pore pressure to the lithostatic pressure, on the megathrust
is estimated to be 0.96—0.98.

Similar coseismic rotations of the principal stress axes
were also reported for two other recent great megathrust
earthquakes, the 2004 M, 9.2 Sumatra-Andaman earthquake
and the 2010 My, 8.8 Maule, Chile, earthquake as shown
in Fig. 13 (Hardebeck, 2012). Although the analysis used
Global Centroid Moment Tensor (GCMT) solutions (Ek-
strom et al., 2012), so the amount of focal mechanism data
used for stress tensor inversions is much smaller than in the
case of the 2011 Tohoku-Oki earthquake described above, it

showed significant rotations of the o} axis associated with
those earthquakes, from shallow plunging o; axes to steeper
plunging axes near 45° (Fig. 14). The observed stress rota-
tions imply nearly complete stress drops in these two great
megathrust earthquakes, as in the case of the Tohoku-Oki
earthquake. More than 80% of the pre-mainshock stress
was estimated to have been relieved in the Maule, Chile,
earthquake and in the northern part of the Sumatra-Andaman
rupture and ~60% was relieved in the southern part of the
Sumatra-Andaman rupture. The GCMT data also showed
significant rotations of the principal stress axes and thus
a near-complete stress drop in the Tohoku-Oki earthquake
(Fig. 14), as already shown by the dense local broadband net-
work (F-net and Hi-net) data (Fig. 12). These observations
suggest that megathrusts are weak in general.

Changes in stress fields due to the Tohoku-Oki earth-
quake were also observed in the upper plate right above its
fault plane (Hasegawa et al., 2012a; Hasegawa and Yoshida,
2015). Before the earthquake, the o, axis was oriented in
the direction of the plate convergence, specifically, in the di-
rection of an estimated large slip area near the trench axis
(Fig. 15(a)). For the area in which the static stress change
was larger than 15-25 MPa (Fig. 15(c)), the stress field
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compressive stress, blue square) (a) before and (b) after the 2011 M, 9.0 Tohoku-Oki earthquake in region A in the inset map (Hasegawa et al., 2011).
(c) and (d) show the same principal stresses for region B. Principal stress orientations are shown on the lower focal hemisphere, deep and light colors
indicating principal stresses falling within 68% and 95% confidence levels, respectively.
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completely reversed and became similar to the static stress
change after the Tohoku-Oki earthquake, with the minimum
compressive stress (03) axis being oriented in the direction
of the large near-trench slip area (Fig. 15(b)). This indicates
that the differential stress magnitude in the upper plate prior
to the earthquake was less than the static stress change, i.e.,
less than 15-25 MPa, a very small stress. If we assume that
this was caused by overpressured fluids, the pore pressure
ratio in the upper plate is estimated to have been larger than
~0.95-0.97.

Small shear stresses operating in the subduction megath-

rust have been reported from analyses of different data
sources. Lamb (2006) derived a very small shear stress of
about 16 MPa on the megathrust in the NE Japan subduction
zone based on the force balance between the shear stress at
the plate interface and the lithostatic pressure in the fore-
arc wedge. Later, Seno (2009) estimated the shear stress
on the megathrust off Miyagi Prefecture, the central part of
the 2011 Tohoku-Oki rupture area, to be ~20 MPa, based
on the force balance between the shear stress and lithostatic
pressure, similarly to Lamb (2006), but having improved the
estimation of the lithostatic pressure using seismic profiling
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results. This analysis yielded an extremely high pore pres-
sure ratio of 0.965 at the megathrust. Furukawa and Uyeda
(1989) also derived a very small shear stress of around 20
MPa at the megathrust of the NE Japan subduction zone to
reasonably explain the observed heat flow data in the area.

Very small shear stresses and anomalously high pore fluid
pressures (pore pressure ratio more than 0.95) in the shallow
portion of the megathrust in the range within 5060 km of
the trench axis were also estimated from slope angle, dip an-
gle of the plate interface and the internal deformation of the
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Fig. 16. Across-arc vertical cross-sections of S-wave velocity perturbations in the NE Japan subduction zone (Nakajima et al., 2001a). Cross-sections
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fore-arc prism (Kimura et al., 2012).

Aqueous fluids in the plate boundary zone which con-
tribute to the generation of interplate events are probably
supplied from the sediment layer directly below and from
the dehydration decomposition of slab crust and slab mantle
materials occurring at greater depths. A recent geochemi-
cal study provides clear evidence of fluids flowing through
the entire plate interface induced by the 2011 Tohoku-Oki
earthquake. Sano et al. (2014) detected a bottom seawater
3He anomaly near the trench axis after the earthquake, which
suggests that the mainshock rupture provided a fluid pathway
connecting the mantle wedge to the trench surface and that
aqueous fluids supplied from greater depths also contributed
to generating the Tohoku-Oki earthquake.

4. Transportation of Aqueous Fluids from Slab to
Arc Crust

Pathways for H,O from the slab to the arc crust by way
of the mantle wedge have been inferred from seismic obser-
vations beneath NE Japan (Hasegawa and Nakajima, 2004;
Hasegawa et al., 2005, 2008). H,O liberated from the slab
during dehydration rises up to the mantle wedge just above,
where it reacts with mantle materials to form a layer contain-
ing hydrated minerals such as serpentine, chlorite, and am-

phibole (e.g., Davies and Stevenson, 1992; Iwamori, 1998,
2000). This hydrated layer immediately above the slab is
thought to be dragged downward, being entrained with the
subducting slab, to depths where further dehydration-related
decomposition may occur (Iwamori, 1998, 2000; Schmidt
and Poli, 1998; Maruyama and Okamoto, 2007). This hy-
drated layer formed directly above the slab has been detected
as a thin seismic low-velocity layer located immediately
above the slab at depths ranging between ~70 km and ~130
km, by both receiver function analyses (Kawakatsu and
Watada, 2007) and a double-difference tomography study
(see Fig. 6(b); Tsuji et al., 2008). The depth limit of the
hydrated layer for old plate subduction zones, such as that
in NE Japan, has been estimated to be 150-200 km by the
numerical simulation of a plate subduction model (Iwamori,
1998), which is slightly deeper than the observed depth,
demonstrating the need for further investigation.

McKenzie (1969) predicted that entrainment of mantle
material with slab subduction results in the migration of
mantle material on the back-arc side to fill the enclosed
space. Seismic tomography studies have detected this re-
turn flow portion of secondary convection associated with
slab subduction as a clear inclined sheet-like seismic low-
velocity, high-attenuation layer oriented nearly parallel to
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the subducting slab (Hasegawa et al., 1991; Zhao et al.,
1992, 1994, 2007a; Zhao and Hasegawa, 1993; Nakajima
et al., 2001a, b, 2013; Tsumura et al., 2000). Figure 16
shows across-arc vertical cross-sections of S-wave velocity,
demonstrating an inclined low-velocity layer continuously
distributed underneath the entire Tohoku area sub-parallel
to the subducting slab (Nakajima et al., 2001a). Across-
arc vertical cross-sections of Q,~' in Fig. 7 also demon-
strate the existence of an inclined high-attenuation layer
continuously distributed in the mantle wedge beneath all
of Tohoku. This inclined, sheet-like, low-velocity, high-
attenuation zone is thought to represent the upwelling por-
tion of a secondary convection cell mechanically induced in
the mantle wedge by slab subduction (Hasegawa and Naka-
jima, 2004; Hasegawa et al., 2005, 2008), as schematically
illustrated in Fig. 17(a).

H,O liberated at depth from the hydrated layer directly
above the slab by dehydration decomposition migrates fur-
ther upward to meet this immediately overlying upwelling
flow zone. The addition of H,O to hot mantle material
within the upwelling flow probably causes partial melting.
This mechanism occurs along with decompression melting.
In fact, temperatures in the upwelling flow, estimated by
comparing the observed seismic wave attenuation structure
with the experimental results of olivine-dominated rocks,
are higher than the wet solidus of peridotite (Nakajima
and Hasegawa, 2003b). Moreover, Nakajima et al. (2005)
showed that melt-filled pores with melt fraction volumes of
0.1 to several percent exist within this upwelling flow, by
comparing the observed fall-off rates of V), and V, with a
diagram from Takei (2002). H,O originally released from
the slab is, thus, eventually incorporated into melt within
the inclined upwelling flow in the mantle wedge. The up-
welling flow finally meets the arc Moho, and melt within the
upwelling flow accumulates immediately below the Moho
along the volcanic front. This melt then rises, penetrating the
arc crust and ultimately reaching the surface to form volca-
noes. Thus, the volcanic front is formed nearly parallel to the
trench axis at locations where inclined sheet-like upwelling
flows in the mantle wedge reach the arc Moho (Hasegawa
and Nakajima, 2004; Hasegawa et al., 2005, 2008, 2013).

Seismic tomography has further revealed that the veloc-
ity of this inclined sheet-like low-velocity layer varies along
the arc. Very low-velocity areas exist periodically every 80
km or so along the strike of the arc (Hasegawa and Naka-
jima, 2004), as illustrated in Fig. 18(a), which shows the S-
wave velocity distribution along the inclined sheet-like low-
velocity layer. Comparing this with the topographic map
shown in Fig. 18(b) reveals that the velocity reduction in
the low-velocity layer at depths of 30—150 km in the man-
tle wedge correlates well spatially with the distribution of
deep low-frequency earthquakes in the lowermost crust, the
distribution of Quaternary volcanoes, and the distribution of
topographic highs that run from the backbone range to the
back-arc region at the surface.

Figure 17 shows the main transport paths of H,O from the
slab to the arc crust, including the mantle upwelling flow in
NE Japan, as estimated from seismic observations. The vol-
canic front, which runs through the middle of the arc nearly
parallel to the trench axis, is formed above the region where
the inclined upwelling flow reaches the Moho (Fig. 17(a)).
The upwelling flow in the mantle wedge, resolved as an in-
clined low-velocity and high-attenuation layer, is sheet-like,
with its thickness varying locally along the strike of the arc
(Fig. 17(b)). In regions characterized by a local thickening
of the upwelling flow and by large volume fractions of melt,
some of the melt may separate from the inclined upwelling
flow before the upwelling flow reaches the arc Moho. This
separated melt rises vertically from the point of separation in
the form of a plume and accumulates below the Moho. Some
of this melt migrates upward and penetrates into the crust
contributing to the formation of volcanoes and to crustal up-
lift in the back-arc region.

The inclined upwelling flow mechanically induced by slab
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Fig. 18. Schematic illustration of the crust and upper mantle structure of Tohoku showing the inferred H>O transportation path and upwelling flow with

varying thicknesses in the mantle wedge (Hasegawa and Nakajima, 2004;

expression.

subduction in the mantle wedge is thought to be common to
all subduction zones. Inclined low-velocity zones that prob-
ably correspond to upwelling flow have been detected in the
mantle wedge of several other subduction zones, including
Alaska (Zhao et al., 1995), the eastern Aleutians (Abers,
1994), Kamchatka (Gorvatov et al., 1999), Hokkaido (Wang
and Zhao, 2005), Kyushu (Abdelwahed and Zhao, 2007),
and Tonga (Zhao et al., 1997a, b), although the images of
the low-velocity zones are not as clear as those of Tohoku
(Fig. 16). Recent seismic tomography studies, using data
from both local and teleseismic events recorded by the dense
nationwide seismic network, have clearly shown the exis-
tence of inclined low-velocity layers in the mantle wedge
beneath the entire Japanese archipelago (Yanada et al., 2010;
Zhao et al., 2012; Huang et al., 2013).

Figure 19 shows clear images of this inclined low-velocity
layer in the mantle wedge for an area between the southwest-
ern portion of the Kuril Arc and the northern portion of the
Izu—Bonin Arc in eastern Japan. Inclined low-velocity lay-
ers in the mantle wedge are distinctly visible in all the cross-
sections between Hokkaido (sections A and B) and the Izu
arc (sections L and M), except in the arc—arc junction areas
beneath the Hokkaido corner (section D) and Kanto (section
K). Inclined low-velocity layers corresponding to upwelling
flow are also distinctly visible in the subduction zone in SW
Japan associated with the subduction of the Philippine Sea
slab. Figure 20 shows the existence of inclined low-velocity

Hasegawa et al., 2013). (a) across-arc vertical cross-section and (b) 3D

layers in the mantle wedge at depths of 30-200 km, except in
the area beneath Chugoku (sections Q through T). The lack
of a visible inclined low-velocity layer there is perhaps an
artifact of lower spatial resolution in that area beneath the
Japan Sea caused by poor ray-path coverage.

The existence of inclined low-velocity layers in the man-
tle wedge across the entire Japanese archipelago, except at
arc—arc junctions associated with volcanic gaps and in the
Chugoku region, where the resolution of the seismic tomog-
raphy is not sufficient, suggests that inclined upwelling flow
in the mantle wedge probably occurs in all subduction zones
and that volcanoes are formed at locations where these in-
clined upwelling flows in the mantle wedge reach the arc
Moho. These upwelling flows likely contribute to the trans-
portation of H,O originally released from the subducting
slab to the arc crust. Although the upwelling flow proba-
bly plays a major role in H,O transportation passing through
the mantle wedge, some amount of H,O released from the
shallower portion of the slab crust may infiltrate the mantle
wedge in the forearc area, finally reaching the forearc crust.
However, traces of such transport paths of H,O have not yet
been imaged by seismic tomography studies. Katayama et
al. (2010) inferred that such transport paths of H,O by way
of the forearc mantle wedge are mainly operating in SW
Japan because eclogite-forming phase transformation occur
there at much shallower depths of 50-60 km in the slab crust
because of warmer temperature conditions. This suggests
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Fig. 21. (a) Horizontal E-W strain rates estimated from nationwide dense GPS network data for the period 1997-2001 (Sato et al., 2002; Miura et al.,
2004). Red dots show shallow microearthquakes that occurred during the same period, and green rectangles denote the fault planes of large earthquakes
(Sato et al., 1997). (b) Map showing S-wave velocity perturbations at a depth of 40 km in the uppermost mantle (Nakajima et al., 2001a). The color
scale on the bottom shows S-wave velocity perturbations. The triangles denote volcanoes.

the presence of a considerable amount of H,O in the forearc
crust of the SW Japan subduction zone.

5. Shallow Inland Earthquakes

The dense nationwide GPS network in Japan has allowed
a high-strain-rate zone along the Ou backbone range in To-
hoku to be identified (Sato et al., 2002; Miura et al., 2004;
Hasegawa et al., 2005). The spatial distribution of the E—
W components of horizontal strain rates estimated from GPS
network data demonstrates the existence of a high-strain-rate
zone passing through the middle of Tohoku in the along-
arc direction (Fig. 21(a)). The figure also shows the exis-
tence of another high-strain-rate zone along the Japan Sea
coast corresponding to the northern extension of the Niigata-
Kobe Tectonic Zone in central Japan (Sagiya et al., 2000).
A concentration of shallow earthquakes is clearly visible in
this high-strain-rate zone along Tohoku’s backbone range
(Fig. 21(a)), suggesting that this seismicity is caused by the
presence of contractional crustal deformation. Active reverse
faults are distributed along the eastern and western edges of
the backbone range (Active Fault Research Group, 1991), on

both edges of the high-strain-rate zone.

The evidence points to the locally concentrated contractive
arc crust deformation, as indicated by the high-strain-rate
zones, as being caused by aqueous fluids originally released
from the subducting slab, and being responsible for large
shallow inland earthquakes (Hasegawa et al., 1991, 2000,
2005). As described in the previous section, the inclined
sheet-like upwelling flow in the mantle wedge reaches the
bottom of the arc crust along the volcanic front or along the
Ou backbone range in the NE Japan arc, as Fig. 17 shows
schematically. Actually, the inclined seismic low-velocity
zone in the mantle wedge corresponding to this upwelling
flow meets the Moho right below the volcanic front within
the Ou backbone range as shown in Fig. 21(b). The melt con-
tained in this upwelling flow either underplates the arc crust
or penetrates into it, causing a locally elevated geotherm
along the backbone range defined by heat flow measurements
(Tanaka and Ishikawa, 2002). Some of the melt that pene-
trates the arc crust may cool and partially solidify, expelling
H,O. Thus, H,O originally released from the subducted slab
reaches the arc’s mid-crust along the Ou backbone range.
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The presence of H,O is expected to weaken the crustal mate-
rial there, which intensifies local contractional deformation
of the arc crust in the present margin-normal compression
stress field.

Across-arc and along-arc vertical cross-sections of seis-
micity, V,,/ V; ratio and S-wave reflectors in central Tohoku
are shown in Fig. 22 (Hori et al., 2004). The figure clearly
shows the existence of anomalously high V,/ V, zones in the
lower crust right beneath volcanoes. The geotherms shown
in Fig. 22(e) are locally elevated right below the volcanoes,
and so is the bottom of the seismogenic zone, which approx-
imately corresponds to the 350° isothermal contour. Deep
low-frequency earthquakes occur on the edge of the high
V,/ Vs zones. S-wave reflectors are widely distributed in
the mid-crust beneath the backbone range, locally shallow-

ing right above the high V,/V, zones beneath volcanoes.
Prominent S-wave reflectors are detected not only beneath
volcanoes but also beneath earthquake faults.

Figure 23(a) is a schematic illustrating the deformation
pattern of the arc crust in Tohoku inferred by these obser-
vations. Melt contained in the inclined upwelling flow in
the mantle wedge and intruded into the arc crust heats the
surrounding crustal rocks beneath the Ou backbone range.
This locally elevates the brittle—ductile transition zone there.
Some of the melt cools and solidifies, expelling H,O that
can move rapidly at lower crustal levels. It is the H,O
thus expelled from the melt that causes anomalously deep
low-frequency earthquakes occurring in the lowermost crust
(Hasegawa et al., 1991; Hasegawa and Yamamoto, 1994).
Many bright sub-horizontal S-wave reflectors have been de-
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tected at mid-crustal levels throughout the backbone range
(Hori et al., 2004). These S-wave reflectors may be accumu-
lations of near-lithostatically overpressured H,O within thin
horizontal sill-like reservoirs in the mid-crust (Matsumoto
and Hasegawa, 1996; Umino et al., 2002a). Some of the
H,O migrates upward further and reaches the upper crust.
Thus, the entire crust along the backbone range is locally
weakened compared to the surrounding crust, concentrat-
ing contractional deformation and uplift along the backbone
range under the current margin-normal compressive stress
field. In turn, localized contractional deformation along the
backbone range concentrates stress in the upper crust, which
may eventually lead to rupture of the entire upper crust, gen-
erating a large shallow inland earthquake (Hasegawa et al.,
2005). This concentrated contractional deformation along
the backbone range is also likely to be responsible for the
extremely high smaller-magnitude earthquake activity there
(Fig. 21(a)).

In central to western Japan, Sagiya et al. (2000) detected
the existence of a high-strain-rate zone extending from Ni-
igata to Kobe based on an analysis of dense GPS network
data. This high-strain-rate zone, termed the Niigata-Kobe
Tectonic Zone (NKTZ), was first noticed by Hashimoto
(1990) and Hashimoto and Jackson (1993) based on an anal-
ysis of triangulation data for the past 100 years. The NKTZ

is approximately 100 km wide and extends about 500 km in
a NE-SW direction. It undergoes contraction in the WNW-
ESE direction at a rate of about 10~7/year, orders of mag-
nitude greater than that of the surrounding areas. Histor-
ically, there have been many large earthquakes along this
zone, suggesting that the present tectonic deformation pat-
tern has persisted over the last several hundred years (Sagiya
et al., 2000). Strikingly high strain rates observed along this
zone have been interpreted in terms of both interplate defor-
mation (e.g., Shimazaki and Zhao, 2000) and intraplate de-
formation (e.g., lio et al., 2002, 2004; Hyodo and Hirahara,
2003; Yamasaki and Seno, 2003).

Shimazaki and Zhao (2000) regarded the NKTZ as a colli-
sional plate boundary, and discussed its strikingly high strain
rates in terms of interplate deformation. In contrast, lio et al.
(2002, 2004) insisted that the NKTZ is not a colliding plate
boundary. To explain the observed high strain rates, the latter
proposed a model of a weak zone with low viscosity existing
in the lower crust immediately beneath the NKTZ. They in-
ferred that this weak zone results from locally elevated H,O
content caused by the upward migration of H,O from the de-
hydration of the subducting Philippine Sea slab immediately
below. Using numerical simulations employing a viscoelas-
tic finite element model, Hyodo and Hirahara (2003) showed
that the observed high strain rates along the NKTZ can be
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well explained by the presence of an underlying 15-km-thick
viscoelastic lower crust with a viscosity as low as that of the
uppermost mantle. Yamasaki and Seno (2005) assumed that
the observed high strain rates along the NKTZ are due to the
loading and unloading of the subducting Philippine Sea slab.
They examined the effect of rheological heterogeneities in
the lower crust or uppermost mantle on the surface deforma-
tion using a two-dimensional finite element method. They
showed that the observed high strain rates could be repro-
duced well by a model with a low-viscosity upper mantle
immediately beneath, and in the direction of the trench from
the NKTZ. Such a low-viscosity uppermost mantle could
be formed by the upward migration of H,O released from
the dehydration of the subducting Philippine Sea and Pacific

slabs.

In addition, a seismic tomography study by Nakajima
and Hasegawa (2007b) revealed a prominent low-velocity
anomaly in the lower crust along the NKTZ in its southwest
and central parts, extending to the uppermost mantle along
the NE and central parts of the zone (Fig. 24). This promi-
nent low-velocity anomaly suggests the presence of melt or
aqueous fluids liberated from the Philippine Sea slab directly
below. It also points to the possibility that the crust and upper
mantle along the NKTZ are weakened by the accumulation
of H,O. These studies suggest that H,O, originally derived
from the subducting slab, or melt produced by the addition
of H,O that originated in the slab, play an important role
in stress accumulation and earthquake generation in the arc
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Fig. 25. S-wave velocity structure in the source areas of recent large shallow inland earthquakes in Japan (Hasegawa et al., 2009). (a) 1962 M 6.5 N Miyagi
(Nakajima and Hasegawa, 2003a), (b) 2003 M 6.4 N Miyagi (Okada et al., 2007), (c) 2004 M 6.8 Niigata-Chuetsu and 2007 M 6.8 Niigata-Chuetsu-Oki
(Nakajima and Hasegawa, 2008), (d) 2007 M 6.9 Notohanto-Oki, (e) 1995 M 7.2 S Hyogo (Kobe) (Zhao et al., 1996), (f) 2000 M 7.2 W Tottori (Zhao et
al.,2004), and (g) 2008 M 7.2 Iwate-Miyagi Nairiku (Okada et al., 2010) earthquakes. Color scale in each figure shows S-wave velocity perturbations.
(e), (f), and (g) are strike-parallel vertical cross-sections along the mainshock faults, other figures are sections across the mainshock faults. Mainshocks
and aftershocks are denoted by stars and circles or crosses, respectively. (Reprinted from Gondwana Res., 16, Hasegawa, A., J. Nakajima, N. Uchida,
T. Okada, D. Zhao, T. Matsuzawa, and N. Umino, Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic
observations: An overview, 370-400, Copyright 2009, with permission from Elsevier.)

crust in central to southwestern Japan. The mechanism by
which shallow inland earthquakes are generated is thus sim-
ilar to that responsible for the high-strain-rate zone along the
Ou backbone range in NE Japan.

Seismic tomography using dense temporary seismic ob-
servation networks deployed in the source areas of recent
large shallow inland crustal earthquakes has provided fur-
ther evidence of the important role H,O plays in earthquake
generation (Hasegawa et al., 2009). Figure 25 shows verti-
cal cross-sections of S-wave velocities obtained by tempo-
rary observations of aftershocks following seven large, re-
cent, shallow inland earthquakes. We also include the 1962
M 6.5 northern Miyagi earthquake, because a dense tempo-

rary observation network has been deployed in the area of its
source. Prominent S-wave low-velocity zones can be read-
ily identified in the lower crust immediately below the fault
planes of all the large shallow inland earthquakes. Some of
these low-velocity zones extend downward to the uppermost
mantle, which suggests that their low velocities are caused
by H,O, or melt, supplied from the uppermost mantle just
below. We infer that they are caused by H,O of slab origin.
Dense magneto-telluric soundings across active fault
structures in the northern South Island of New Zealand also
provide evidence of H,O’s important role (Wannamaker et
al., 2009). The across-fault cross-section of electrical re-
sistivity shown in Fig. 26 clearly indicates the presence of
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Fig. 26. Electrical resistivity profile across the northern South Island of New Zealand (Wannamaker et al., 2009). The Alpine-Wairau (A/Wr) fault
separates the Marlborough system of active dextral strike-slip faults to the southeast, from the Buller-Nelson province of active reverse faulting to the
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extremely low-resistivity zones in the crust associated with
individual faults in the Marlborough strike-slip fault system.
In the uppermost mantle northwest of the Alpine-Wairau
fault below the crust undergoing active compressional in-
version (Ghisetti and Sibson, 2006), there is another broad
low-resistivity zone, which can be interpreted as a path for
transporting H,O from the subducting slab to the crust. H,O
thus derived from the slab rises and finally penetrates into
the fault zones in the upper crust where historic great earth-
quakes have occurred on high-angle reverse faults that are
unfavorably oriented for failure (Wannamaker et al., 2009).
Similar low resistivity zones distributed in the lower crust
below faults have also been found in many areas around the
world, including the North Anatolian fault, the San Andreas
fault and the 2000 Western Tottori earthquake fault (e.g.,
Mitsuhata et al., 2001; Ogawa and Honkura, 2004; Tank et
al., 2005; Yamaguchi et al., 2007; Becken et al., 2008).
Seismic tomography seems to show further evidence of
aqueous fluids that have migrated upward and infiltrated
from the highly overpressured lower crust into the seismo-
genic fault zone in the upper crust. Figure 27(a) shows
across-fault vertical cross-sections of P-wave velocity per-

turbations in the source area of the 2004 M 6.7 Niigata-
Chuetsu earthquake, which were derived by applying the
double-difference tomography of Zhang and Thurber (2003)
to travel-time data of many aftershocks obtained from a
dense temporary seismic observation network deployed af-
ter the mainshock (Okada et al., 2006). P-wave low-velocity
zones distributed along the fault planes of the mainshock and
large aftershocks are clearly visible, suggesting the presence
of overpressured fluids that have infiltrated fault zones in the
upper crust as shown schematically in Fig. 27(b) (Sibson,
2007).

Many large, shallow, inland thrust fault-type earthquakes
that occur along active faults in NE Japan are reactivations
of pre-existing normal faults that had formed at the time the
Japan Sea opened (e.g., Sato, 1994). Sibson (2009) noticed
that these seismogenic faults have steep dips and are unfa-
vorably oriented for frictional reactivation under the current
stress field that has nearly horizontal maximum compres-
sive stress. He inferred that overpressured conditions along
the faults are required to re-activate these pre-existing faults,
and estimated that pore pressure ratios must be greater than
0.8. Based on these observations, the overpressured condi-
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257, Sibson, R. H., An episode of fault-valve behaviour during compressional inversion?—The 2004 M;6.8 Mid-Niigata Prefecture, Japan, earthquake

sequence, 188-199, Copyright 2007, with permission from Elsevier.)

tion of a seismogenic fault zone is schematically shown in
Fig. 23(b), which is modified from Fig. 6 of the fault valve
model by Sibson (1990, 1992).

Following the 2011 Tohoku-Oki earthquake, stress fields
seem to have changed in some inland areas of NE Japan,
where the principal stresses came to be oriented in approx-
imately the same direction as the static stress change as-
sociated with the Tohoku-Oki earthquake (Yoshida et al.,
2012). Changes in the stress field following large earth-
quakes have also been detected in the source areas of the
2008 M 7.2 Twate-Miyagi Nairiku earthquake and after the
2011 M 7.0 Fukushima-Hamadori earthquake that occurred
inland (Yoshida et al., 2014, 2015b, 2016). The princi-

pal stress orientations also became approximately the same
as those of the static stress change associated with each
mainshock. Figures 28(a)—(c) show the post-earthquake
stress field in the source area of the 2008 M 7.2 Iwate-
Miyagi Nairiku earthquake obtained by stress tensor inver-
sions of many aftershock focal mechanism data (Yoshida
et al., 2014). The observed orientations of the o; axis
have a spatially heterogeneous distribution, being approx-
imately similar to those of the static stress change by the
mainshock rupture as shown in Figs. 28(d)—(f). Orienta-
tions of the o) axis after the mainshock, estimated by as-
suming a differential stress magnitude of 10 MPa prior to the
mainshock (Figs. 28(g)—(1)), well explain the observed stress
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Fig. 28. Stress field in the source area of the 2008 M 7.2 Iwate-Miyagi Nairiku reverse fault rupture and static stress change by the mainshock (Yoshida
et al., 2014). (a), (b) and (c) Orientations of o axes after the mainshock obtained by stress tensor inversions. (d), (e) and (f) Orientations of the o axes
of the static stress change by the mainshock rupture based on the slip model of linuma et al. (2009). These are plotted at the same locations where the
stress tensor inversions were performed. Slip distributions are shown by thick contours. Differential stresses (MPa) of the static stress change are shown
by thin contours of 0.5, 1, 2, 5, and 10 MPa. (g), (h) and (i) Estimated oy axis orientations after the main shock, given by the sum of stress tensors
before the mainshock and the static stress change. Assumed differential stress before the mainshock is 10 MPa. Orientations of the o axis are plotted
separately into three depth ranges, 0-3 km, 3-5 km, and 5-8 km, so that they do not overlap. They are colored by depth. Length of bar corresponds to

the plunge of the o} axes.

field (Figs. 28(a)—(c)), which indicates that the shear stress
working prior to the mainshock was very small. The esti-
mated shear stress magnitude is ~5—15 MPa (Yoshida et al.,
2014). Figure 29 shows the post-earthquake stress field and
static stress change for the 2011 M 7.0 Fukushima-Hamadori
earthquake. In this case again, the observed post-earthquake
stress field and the static stress change associated with the
mainshock have nearly the same spatial pattern of the o3-axis
orientations. If this is the case, the magnitude of the differ-
ential stress prior to the mainshock in this area was also ex-
tremely low with an estimated value of ~2-30 MPa (Yoshida
et al., 2015b).

A recent study on stress fields in NE Japan, using an ex-
tensive set of focal mechanism data, revealed that there is a
tendency for highland regions to be characterized by a strike-
slip stress regime while the lowlands have a reverse fault
stress regime (Fig. 30; Yoshida et al., 2015a). This suggests
that the gravity effect of topography is reflected in the present
stress field, so that the differential stress magnitudes inland
in NE Japan are as small as ~16-26 MPa. Since earthquakes
are actually occurring under such small stress magnitudes,
the faults in the inland area must be weak. The weak faults
are probably due to overpressured fluids there. If the weak-
ness of the fault is attributed to the presence of overpressured
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rectangles in (c).

fluids, a pore pressure ratio is estimated to be ~0.86-0.92.
Stress fields possibly affected by high topography are also
visible in several high-altitude areas of the world, such as
Central Asia and Tibet (England and McKenzie, 1982; Eng-
land and Houseman, 1989; England and Molnar, 1997a, b;
Flesch et al., 2001), western North America (Flesch et al.,
2000, 2007) and the Andes (Wdowinski et al., 1989; Lamb
2000; Ghosh et al., 2009), suggesting that similar low differ-
ential stresses also prevail there.

All of these observations suggest that H,O, originally ex-

pelled from the subducting slab and transported to the arc
crust, plays an important role in generating shallow inland
earthquakes in subduction zones.

6. Summary

Precise determinations of the hypocenters of intraslab
earthquakes and the seismic velocity and attenuation struc-
tures in the slab crust have provided evidence that the
dehydration-derived H,O triggers intermediate-depth in-
traslab earthquakes. Intermediate-depth events tend to be
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concentrated at the dehydration loci of the metamorphosed
slab crust and the serpentinized slab mantle. Earthquakes in
the oceanic crust of the Pacific slab below NE Japan form
a concentrated belt-like seismic zone oriented parallel to the
isodepth contours of the upper plate interface and located
near the dehydration loci of the metamorphosed slab crust.
This seismic belt deepens locally in the Kanto area of cen-
tral Japan, where the dehydration loci are also expected to
deepen because of contact with the cold overlying Philippine
Sea slab. The down-dip limit of the seismic low-velocity slab
crust reaches the depth of this seismic belt, consistent with
the expectation that the dehydration-related phase transfor-

mation causes higher seismic velocity below that depth. The
down-dip limit of the low-velocity slab oceanic crust is also
locally depressed in the Kanto area, again as expected.
Recent studies demonstrate that interplate earthquakes are
generated by dynamic slip at asperities that have strong fric-
tional coupling dominated by stick-slip behavior on the plate
interface. Asperities are embedded in regions of weak fric-
tional coupling dominated by stable sliding, and aseismic
slip in the surrounding stably sliding areas causes incremen-
tal stress accumulation at the asperities, eventually leading
to dynamic slip and generating interplate earthquakes. The
size of an earthquake is determined not only by the size of the
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asperity but also by the interaction between asperity and non-
asperity areas. The 2011 great Tohoku-Oki earthquake actu-
ally attained its moment magnitude of 9.0 by the simultane-
ous ruptures of several asperities that had previously caused
M > 7 earthquakes and some non-asperity areas. H,O of
slab origin is considered to contribute to determining the fric-
tional properties on the megathrust and, thus, the formation
of asperities. Deep low-frequency tremors/earthquakes, ac-
companied by episodic slow slip events in some cases, have
been detected by both seismic and GPS observations in ar-
eas surrounding locked zones on the plate interface. Seismic
tomography studies have revealed seismic low-velocity and
anomalously high V,,/V, zones in the vicinity of the low-
frequency tremors/earthquakes, suggesting that H,O plays
an important role in generating these low-frequency events.
A near-complete stress drop was observed in the 2011
Tohoku-Oki earthquake, which indicates that the plate inter-
face is very weak. This weakness is probably caused by over-
pressured fluid with an extremely high pore pressure ratio of
~0.96-0.98. Nearly complete stress drops have also been es-
timated in two other recent great megathrust earthquakes, the
2004 M, 9.2 Sumatra-Andaman and My, 8.8 Maule, Chile,
quakes, suggesting that megathrusts are weak in general.

The transport of H,O from the slab to the arc crust via the
mantle wedge beneath NE Japan has been estimated based
on seismic observations. Both the ascending and descending
portions of secondary convection flow in the mantle wedge
have been resolved as inclined seismic low-velocity zones.
The ascending flow contains melt-filled pores with volume
fractions of 0.1 to several percent, which are formed both
by the addition of H,O of slab origin and by decompres-
sion melting. This inclined upwelling flow in the mantle
wedge reaches the arc Moho immediately below the vol-
canic front, demonstrating that the formation of the volcanic
front is caused by this upwelling flow. Such inclined up-
welling flow was detected by the presence of prominent seis-
mic low-velocity zones in the mantle wedge beneath active
volcano chains in the whole of the Japanese archipelago from
Hokkaido to Kyushu, indicating that the volcano chains in
the entire area are formed by this upwelling mantle flow.

H,O of slab origin, thus transported to the arc crust, ap-
pears not only to cause arc magmatism but also enables local
contractional deformation of the arc crust, which eventually
leads to shallow inland earthquakes. Recent GPS observa-
tions reveal the existence of a high-strain-rate zone that ex-
tends from Niigata to Kobe in central to SW Japan, and along
the Ou backbone range in NE Japan. Many large shallow in-
land earthquakes have occurred along these high-strain-rate
zones. Prominent seismic low-velocity zones have been de-
tected in the lower crust and/or upper mantle immediately
beneath these high-strain-rate zones, suggesting the presence
of H,O, which perhaps weakens the arc crust there, causing
local contractional deformation.

All these observations suggest that earthquakes in subduc-
tion zones occur in the presence of fluid in overpressured
conditions, produced by H,O supplied directly from the sed-
iments on top of the slab and/or the dehydration decompo-
sition of hydrated minerals in the slab and the migration of

H,O thus derived from the slab. Earthquakes occur along
faults whose strength has been sufficiently lowered by over-
pressured fluids. Thus, the faults are considered to be very
weak when earthquakes rupture, with strengths roughly esti-
mated to be several to a few tens of MPa.

If earthquakes really take place under such small shear
stresses and if the weak faults are caused by fluid overpres-
sure, then such considerations are very important in devel-
oping the research strategy of earthquake forecasting. How
large the pore fluid pressure is, and so how weak the fault is,
becomes necessary information, particularly for long-term
forecasts, although to develop and establish a method for as-
sessing pore fluid pressure at depths along faults is extremely
difficult. Further studies are needed to resolve the question
as to whether or not the faults are indeed so weak.
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