Contents: Monogr. Environ. Earth Planets, Vol. 1 (No. 3), pp. 121-186, 2012 | doi:10.5047/meep.2012.00103.0121 ISSN: 2186-4853 |
2. Resonances in the Trans-Neptunian Region
2.1 Mean motion resonances
2.1.1 Physics of mean motion resonances
2.1.2 Dynamics of particular resonances
2.1.2.1 The 1:1 resonance
2.1.2.2 The 7:4 resonance in the classical region
2.1.3 Captures by the resonance sweeping mechanism
2.1.4 The resonance sticking phenomenon
3. Observing Small Bodies in the Trans-Neptunian Region
3.1 Observations and biases
3.2 The Cumulative Luminosity Function (CLF) and size distribution
3.3 Identifying groups of TNOs in orbital space: Motivations and goals
4. Trans-Neptunian Populations and Constraints for Solar System Models
4.1 Classical TNOs
4.1.1 Cold and hot populations
4.1.2 Classical region dynamics
4.1.3 The outer edge of the trans-Neptunian belt
4.1.4 The 40–42 AU subregion
4.2 Resonant TNOs
4.2.1 The 1:1 resonant population: Neptunian Trojans
4.2.2 The 3:2 resonant population
4.2.3 The 2:1 resonant population
4.2.3.1 Comparing the 2:1 and 3:2 resonant populations
4.2.4 The 5:4, 4:3 and 5:3 resonant populations
4.2.5 The 7:4 resonant population
4.2.6 The 9:4, 5:2, 8:3 and other distant resonant populations
4.2.7 Minor resonant populations
4.3 Scattering vs. scattered TNOs
4.4 Detached TNOs
4.5 Very high-i TNOs
4.6 Other populations
4.6.1 Centaurs
4.6.2 Short period comets
4.6.3 Haumea and collisional families in the trans-Neptunian belt
4.7 The current low total mass of the trans-Neptunian belt
4.8 Summary of constraints for theoretical modeling
5. The Physical Properties of TNOs
5.1 Large TNOs
5.2 Albedos and sizes
5.2.1 Influence of albedos on the size distribution and the CLF
6. General Methods
7. Unveiling New Clues and Constraints for Models of the Architecture of the Trans-Neptunian Region
7.1 The structure of the classical region
7.2 Origins and dynamical interrelation of the main classes of TNOs
7.2.1 Resonant TNOs in the scattered disk
7.3 The Trojan populations of the four giant planets
7.4 Probing the dynamical signatures of early solar system massive planetesimals
8. The Influence of a Massive Planetesimal (Planetoid) in the Trans-Neptunian Region
8.1 The massive planetesimal model
8.2 The resonance sweeping model
8.3 The planetoid-resonance hybrid model
8.3.1 Non-migrating planetoids
8.3.2 Migrating planetoids
8.3.3 Survival of resonant TNOs with the presence of resident trans-Neptunian planets
9. The Origin and Evolution of the Trans-Neptunian Belt with the Presence of a Massive Planetoid
9.1 Summary and preliminary results
9.2 Classical region
9.3 Resonant structure
9.4 Scattered population
9.5 Detached population
9.6 The loss of 99% of the ancient trans-Neptunian belt total mass
9.7 Primordial planetesimal disk size and the possible formation of TNOs beyond 48 AU
9.8 Nature of Neptune's migration
10. Discussions and Implications
10.1 Hints from observations about the existence of a resident trans-Neptunian planetoid
10.2 Prospects for the existence of a trans-Neptunian planet
11. Conclusions
11.1 Main achievements of the planetoid-resonance hybrid model
12. Summary of Results
Acknowledgments
References
[Full text] (PDF 15 MB)